

Data Modeling with Microsoft Power BI

Self-Service and Enterprise DWH with Power BI

With Early Release ebooks, you get books in their earliest form—the author’s
raw and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

Markus Ehrenmueller-Jensen

Data Modeling with Microsoft Power BI

by Markus Ehrenmueller-Jensen

Copyright © 2025 O’Reilly Media. All rights reserve.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 9547.

O’Reilly books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://oreilly.com). For more information, contact our corporate/institutional

sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Michelle Smith and Shira Evans

Production Editor: Katherine Tozer

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2024: First Edition

Revision History for the Early Release

2023-04-14: First Release

2023-06-01: Second Release

2023-07-14: Third Release

2023-09-13: Fourth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098148553 for release

details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data

Modeling with Microsoft Power BI, the cover image, and related trade dress

are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent

the publisher’s views. While the publisher and the author have used good

faith efforts to ensure that the information and instructions contained in this

work are accurate, the publisher and the author disclaim all responsibility for

errors or omissions, including without limitation responsibility for damages

resulting from the use of or reliance on this work. Use of the information and

instructions contained in this work is at your own risk. If any code samples or

other technology this work contains or describes is subject to open source

licenses or the intellectual property rights of others, it is your responsibility to

ensure that your use thereof complies with such licenses and/or rights.

978-1-098-14849-2

Chapter 1. Understanding a Data Model

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

This chapter will teach you (or refresh your memory on) the basics of data

modeling. It starts with the very basic terms, but please bear with me,

because it will help you to understand the reasoning behind why you should

take so much care of the data model. Creating reports and doing analysis

based on a data model which is optimized for these tasks is much easier, than

compared to trying this with a data model optimized for other purposes (for

example, a data model optimized to store data for an application or data

collected in a spreadsheet). When it comes to analytical databases and data

warehouses, you have more than one option. Throughout this book you will

learn that the goal is to create the data model as a Star Schema. At the end of

this chapter, you will know which characteristics a Star Schema will

differentiate it from other modelling approaches. With each and every chapter

throughout this book you will learn more and more why a Star Schema is so

important when it comes to analytical databases in general and Power BI and

Analysis Services Tabular in particular. And I will teach you, how you can

transform any data model into a Star Schema.

Transforming the information of your data source(s) into a Star Schema is

usually not an easy task. On the opposite: It can be hard. It might take several

iterations. It might take discussions with the people who you build the data

model for. And the people using the reports. And the people who are

responsible for the data sources. You might face doubts (from others and

yourself) and might ask yourself if it is really worth all the effort instead of

simply pulling the data in as it is, to avoid all the struggle. At such a point it

is very important that you take a deep breath and evaluate, if a transformation

would make the report creator’s life easier. Because, if it will make the report

creator’s life easier, than it’s worth the effort. Therefore, repeat the data

modelers mantra together with me: Make the report creators life easier.

Before I actually come to talk about transformations, I will to introduce you

to the basic terms and concepts in this chapter:

What is a data model at all?

What is an entity? What has an entity to do with a table?

Why should we care about relations?

I will then introduce the concept of different keys (primary key, foreign

key, surrogate key) and explain the term cardinality.

Next topic is how to combine tables (set operators and joins).

And finally, we compare the different data modeling options and their use

cases.

First stop in our journey towards the Star Schema is describing what a Data

Model is in general terms.

Data Model

A model is something which represents the real-world. It is not replicating

the real world. Think of a map. A map replicating 1:1 the real world would be

very unpractical: It would cover the whole planet. Instead, a map scales down

the distances. And a map is created for a special purpose. A hiking map will

contain different information (and omit others) compared to a road map. And

a nautical chart would look completely different. All of them are maps – but

with different purposes.

The same applies to a data model. A data model represents a certain business

logic. As with the map example, a data model for different use cases will

look differently. Therefore, models for different industries will not be the

same. And even organizations within the same industry will need different

data models (even for basically the identical business processes), as they will

concentrate on different requirements. Throughout the book you will see

several challenges and their solutions and I am confident that they will help

you in overcoming the challenges you will face when building a data model

for your organization.

So, the bad news is: There is not one data model, which rules them all. And:

With just technical knowledge, but no domain-knowledge, it is impossible to

create a useful data model. This book will guide you through the technical

knowledge necessary to successfully build data models for Power BI and/or

Analysis Services Tabular. But don’t forget to collect all requirements from

the business (or explicitly write them down, if you are the domain expert on

your own) before you start with creating the data model. You can collect the

requirements by writing down sentences in natural language, like “We sell

goods to customers and need to know the day and the SKU of the product we

sold.” or “We need to analyze the 12 month rolling average of the sold

quantity for each product.” or “Up to ten employees form a project team and

we need to report the working hours per project task.” These requirements

will help you to know which information you need to store in which

combinations and in which level of detail. There might be more than one

option for the design of a data model for a certain use case.

And there is more bad news: You need the create the correct data model right

from the beginning. As soon as the first reports created on a data model,

every change in the data model bears the risk of breaking those reports. The

later you discover inconsistences and mistakes in your data model, the more

expensive it will be to correct them (in terms of time to check and correct all

depending reports). This cost hits everybody who created those reports:

Yourself, but also other users who built reports based upon your data model.

The design of the data model has a huge impact on the performance of your

reports, which query the data from the data model to feed the visualizations,

as well. A well-designed data model lessens the need for query tuning later.

And a well-designed data model can be used intuitively by the report creators

- saving them time and effort (and therefore saving your organization

money). In a different point of view: Problems with the performance of a

report or report-creators unsure of which tables and columns they need to use

for to gain certain insights are a sure sign for a data model which can be

improved by a better choice of design.

Later, in section “Entity-Relationship Diagrams (ERD)” I will describe

graphical ways of how to document the shape of a data model. Immediately

in the next section, we will learn that a data model consists of entities.

Basic Components

Before you dive in, there are a few key components of a data model that you

will need to understand. In the next section, I will explain the basic parts of a

data model. Later I will walk you through different ways of combining tables

with the help of set operators and joins, and which kind of problems you can

face and how to solve them.

Entity

An entity is someone or something which can be individually identified. In

natural language entities are nouns. Think of a real person (your favorite

teacher, for example), a product you bought recently (ice cream, anybody?)

or a term (e. g. “entity”).

Entities can be both, real and fictious. And most entities have attributes: a

name, a value, a category, point in time of creation, etc. These attributes are

the information we are after. These attributes are displayed in reports to help

the reader of the reports to provide context, gain insights, and get to

decisions. They are used to filter displayed information to narrow down an

analysis, too.

Maybe you wonder, how such entities make it into a data model? They are

stored in tables, as you find out in the next section.

Tables

Tables are the base of a data model. They are part of data models at least

since around 1970, when Edgar F. Codd developed the relational data model

for his employer, IBM. But I am convinced, that collecting information as

lists or tables was already done way before the invention of computers, as

you can see when looking old books. Tables are hosting entities: Every entity

is represented by a row in a table. Every attribute of an entity is represented

by a column in a table. A column in a table has a name (e. g. birthday) and a

data type (e. g. date). All rows of a single column must conform to this data

type (it is not possible to store the place of birth in the column birthday for

any row). This is an important difference between a (database’s) table and a

spreadsheet’s worksheet (e. g. in Excel). A single column in a single table

contains content.

Table 1-1. A table containing the name of doctors

Doctor’s Name Hire Date

Smith 1993-06-03

Grey 2005-03-27

Young 2004-12-01

Stevens 2000-06-07

Karev 1998-09-19

O’Malley 2003-02-14

Entities do not exist just on their own, but are related to each other. This is

what I describe in the upcoming section.

Relations

Relations connect (in most cases) only two entities. In natural language the

relationship is represented by a verb (e. g. bought). Between the same two

entities there might exist more than one single relationship. For example, a

customer might have first ordered a certain product, which we later shipped.

It’s the same customer and the same product, but different relations (ordered

vs. shipped).

Some relationships can be self-referencing. That means, that there can be a

relationship between one entity (= one row in this table) and another entity of

the same type (= a different row in the same table). Organizational

hierarchies a are a typical example here. Every employee (except maybe the

CEO) needs to report to her boss. The reference to the boss is therefore an

attribute. One column contains the identifier of the employee (e. g.

Employee ID) and a different column contains the identifier of who this

employee reports to (e. g. Manager ID). The content of Manager ID of

one row can be found as the Employee ID of a different row in the same

table.

Examples for relations express in natural language:

Dr. Smith treats Mr. Jones

Michael attended (course) “Data Modeling”

Mr. Gates owns Microsoft

Mr. Nadella is CEO

When you start collecting the requirements for a report (and therefore for the

necessary content of your data model) it makes sense to write everything

down in sentences in natural language, as in the examples here. This is the

first step. Later you will learn that you can also draw tables and their

relationships as an “Entity-Relationship Diagrams (ERD)”.

Sometimes the existence of a relationships alone is enough information to

collect and satisfy analysis. But some relationships might have attributes,

which we collect for more in-depts analysis:

Dr. Smith treats Mr. Jones against flue

Michael attended (course) “Data Modeling” with grade A

Mr. Gates owns Microsoft to 50%

Mr. Nadella is CEO since February 4 2014

You learned that entities are represented as rows in tables. The question

remains, how you can then connect these rows with each other to represent

their relationship. The first step to the solution is, to find a (combination of)

columns, which will uniquely identify a row. Such a unique identifier is

called a Primary Key and you will learn all about it in the next section.

Primary Keys

Both, in the real world and in a data model, it is important, that we can

uniquely identify a certain entity (= row in a table). People, for example, are

identified via their names in the real world. When we know two people of the

same (first) name, we might add something to their name (e. g. their last

name) or invent a call name (which is usually shorter than the first name and

last name combined), so that we can make clear, who we are referring to (but

don’t spend too much time). If we don’t pay attention, we might end up with

a confusing conversation, where one is referring to one person and the other

to a different person (“Ah, you are talking about the other John!”).

In a table it is very similar: We can mark one column (or a combined set of

columns, which is called a composite key) as the primary key of the table. If

we do not do that, we might end up with confusing reports because of

duplicates (as the combined sales of both Johns are shown for every John).

Best practice is, to have a single column as a primary key (as opposed to

composite keys) for the same reason I use call names for people: because it is

shorter and therefore easier to use. You can only define one single primary

key.

Explicitly defining a primary key (short: PK) on a table has several

consequences: It puts a unique constraint on the column (which guarantees,

that no other row can have the same value(s) in the primary key; rejecting

both, inserts and updates, which would violate this rule). Every relational

database management system I know, also puts an index on the primary key

(to speed up the lookup for, if an insert or update would violate the primary

key). And all columns used as a primary key must contain a value (nullability

is disabled). I strongly believe that you should have a primary key constraint

on every table.

In a table we can make sure, that every row is uniquely identifiable, by

marking one or the combinations of several rows as the primary key. To

make the example with Employee ID and Manger ID work, it is crucial

that the content of column Employee ID is unique for the whole table.

Typically, in a data warehouse (= a database built for the sole purpose of

making reporting easier) you would not use one of the columns of the source

system as a primary key (e. g. first name & last name or social security

number), but introduce a new artificial ID, which only exists inside the data

warehouse: a surrogate key (s. “Surrogate Keys”).

Surrogate Keys

A Surrogate Key is an artificial value, only created in the data warehouse. It

is neither an entity’s natural key nor the business key of the source system,

and definitely not a composite key (but a single value). It is created solely for

the purpose of having one single key column, which is independent of any

source system. Think of it as a (weird) call name.

Typically, the columns have “ID”, “SID”, “Key”, etc. as part of their names.

The common relational database management system are able to

automatically find a value for this column for you. Best practice is, to use an

integer value, starting at 1. Depending on the number of rows you expect

inside the table, you should find the appropriate type of integer, which

usually can cover something between 1 Byte (= 8 bit = 2 = 256 values) and 8

Bytes (= 8 * 8bits = 64 Bits = 2 = 18 446 744 073 709 551 616 values).

Sometimes global uniqueidentifiers are used. They have their use case in

scale-out scenarios, where processes need to run independently from each

other, but still generate surrogate keys for a common table. They require

more space to store, compared to an integer value. That’s why I would only

use them in cases when integer values can absolutely not be used.

The goal is to make the data warehouse independent from changes in the

source system (e. g. when an ERP system is changed and it might re-use IDs

for new entities or when the data type of the ERP’s business key changes).

Surrogate Keys are also necessary, when you want to implement a Slowly

Changing Dimension Type 2, about which we will talk in a later chapter.

I still did not explain, how you can represent relations of entities. Now it is

time for that. The solution is not very complicated: You just store the

Primary Key of an entity as column in an entity who has a relationship to it.

This way you reference another entity. You reference the Primary Key of a

foreign entity. That’s why this column is called a Foreign Key.

8

64

Foreign Keys

Foreign keys are simply referencing a primary key (of a foreign entity). The

primary key is hosted in a different column, either in a different table, or the

same table. For example, the sales table will contain a column Product ID

to identify, which product was sold. The Product ID is the primary key of

the Product table. On the other hand, the Manger ID column of the

Employee table refers to column Employee ID in the very same table

(Employee).

When we explicitly define a foreign key constraint on the table, the database

management system will make sure, that the value of the foreign key column

for every single row can be found as a value in the referred primary key. It

will guarantee, that no insert or update in the referring table can change the

value of the foreign key to something invalid. And it will also guarantee, that

a referred primary key can not be updated to something different or deleted in

the referred table.

Best practice is to disable nullability for a foreign key column. If the foreign

key value is (yet) not known or does not make sense in the current context,

than a replacement value should be used (typically surrogate key -1). To

make this work, you need to explicitely add a row with -1 as it’s primary key

to the referred table. This gives us better control of what to show in case of a

missing value (instead of just showing an empty value in the report). It also

allows for inner joins, which are more performant compared to outer joins

(which are necessary when a foreign key contains null to not loose those rows

in the result set; read more about “Joins”).

While creating primary key constraints will automatically put an index on the

key, creating foreign key constraints is not implemented this way in e. g.

Azure SQL DB or SQL Server. To speed up joins between the table

containing the foreign key and the table containing the primary key, indexing

the foreign key column is strongly recommended.

A next question might arise in your mind: How do I know, in which of two

entities involved in a relationship do I store the Foreign Key? Before I can

answer this question, you need first to understand that there are different

types of relationships. These types are described as the Cardinality of a

relationship.

Cardinality

Cardinality describes, how many rows can (maximally) be found for a given

row in a related table. For two given tables, the cardinality can be one of the

following ones:

One-to-many (1:m, 1-*)

For example: One customer may have many orders. One order is from

exactly one customer.

One-to-one (1:1, 1-1)

For example: This person is married with this other person.

Many-to-many (m:m, *-*)

For example: One employee works for many different projects. One

project has many employees.

If you want to be more specific, you can also describe, if a relationship can be

conditional. As all relationships on the “many” side are conditional (e. g. a

specific customer might not have ordered yet) this is usually not explicitly

mentioned. Relationships on the “one” side could be conditional (e. g. not

every person is married). We might then change the relationship description

from 1:1 to c:c in our documentation.

Combining Tables

So far you learned that information (= entities and their relationships) is

stored in tables in a data model. Before I introduce you to rules, when to split

information into different table or keep it together in on single table, I want to

discuss how we can combine information spread into different tables in the

upcoming section.

Set Operators

You can imagine a “set” as the result of a query, or as rows of data in a

tabular shape. Set operators allow us to combine two (or more) query results,

by adding or removing rows. It’s important to keep in mind that the number

of columns in the queries involved must be the same. And the data types of

the columns must be identical or the data type conversion rules of the

database management you are using are be able to (implicitly) convert to the

data type of the column of the first query. A set operator does not change the

number or type of columns, only the number of rows. “Set Operators” is a

graphical representation of the following explanation:

Union

Adds the rows from the second set to the rows of the first set. Depending

on the implementation, duplicates may appear in the result or be removed

by the operator. For example, you want a combined list of both,

customers, and suppliers.

Intersect

Looks for rows, which appear in both sets. Only rows appearing in both

sets are kept, all other rows are omitted. For example, you want to find

out, who appears to be both, a customer, and a supplier, in your system.

Except (or minus)

Looks for rows, which appear in both sets. Only rows from the first set,

which are not appearing in the second set are returned. You “subtract” the

rows of the second table from the rows of the first table (hence, this

operator is also called minus). For example, you want to get a list of

customers, limited to those, who are not also a supplier.

WARNING

The comparison, if a row is identical or not is done by evaluating and comparing the content of all

columns of the row of the query. Pay attention here, as while the primary keys listed in the result set

might be identical, the names or description might be different. Rows with identical keys but different

descriptions will not be recognized as identical by a set operator.

Figure 1-1. Set Operators

As you learned, set operators are combining tables in a vertical fashion: They

basically append the content of one table to the content of another table. The

number of columns can not change with a set operator. If you need to

combine tables in a way where you add columns of one table to the columns

of another table, you need to work with join operators.

Joins

Joins are like the set operators in the sense that they are also combining two

(or more) queries (or tables). Depending on the type of the join operator, you

might end up with the same number of rows of the first table, or more or less

rows. With joins you can also add columns to a query (which you can not do

with a set operator).

While set operators compare all columns, joins are done on only a selected

(sub-)set of columns, which you need to specify (in the so-called join

predicate). For the join predicate usually you will use an equality comparison

between the primary key of one table and the foreign key in the other table

(equi join). For example, you want to show the name of a customer for a

certain order (and specify an equality comparison between the order table’s

foreign key Customer Key and the customer table’s primary key

Customer Key in the join predicate).

In only special cases you would compare other (non-key) columns with each

other to join two tables. You will see examples for such joins in the chapters

about use cases, where I will pick advanced problems and demonstrate their

solution. There you will also use comparisons done not on the equality of two

columns, but use comparison operators like between, greater equal, not equal,

etc. (such joins are called non-equi join). One of the examples is about

grouping values (= binning). This is about finding the group in which a

certain value falls into by joining the table containing the groups with a

condition asking for that the value is greater or equal than the lower range of

the bin and lower than the upper range of the bin. While the range values

form the composite primary key of the table containing the groups, the

lookup value is not a foreign key: It is an arbitrary value, possible not found

as a value in the lookup table, as the lookup table only contains a start and

end value per bin, but not all the values within the bin.

Natural joins are a special case of equi-joins. In such a join you do not

specify the columns to compare. The columns to use for the equi-joins are

automatically chosen for you: columns with the same name in the two joined

tables are used. As you might guess, this only works, if you stick to a naming

convention (which is a very good idea anyways) to support these joins.

Earlier in this chapter I used Employee as an typical example, where the

foreign key (Manager Key) references a row in the same table (via primary

key Employee Key). If you actually join the Employee table with itself,

to find e. g. the manager’s name for an employee, you are implementing a

self join.

The important difference between set operators and joins is, that joins are

adding columns to the first table, while set operators are adding rows. Joins

allow you to add a category column to your products which can be found in a

lookup table. Set operators allow you to combine e. g. tables containing sales

from different data sources into one unified sales table. So, I imagine set

operators as a combination of tables in a vertical manner (putting two tables

underneath each other). And join operators as a combination of tables in a

horizontal manner (putting two table side-by-side). This mental concept is not

exact in all regards (set operators INTERSECT and EXCECPT will remove

rows and joins will also add or remove rows depending on the cardinality of

the relationship or the join type) but it is, as I think, a good starting point to

differentiate both.

We can join two tables in the following manners:

Inner join

Looks for rows, which appear in both tables. Only rows appearing in both

tables are kept, all other rows are omitted. For example, you want to get a

list of customers for which we can find an order. You can see a graphical

representation in Figure 1-2.

Figure 1-2. Inner join and outer join

This is similar to the INTERSECT set operator. But the result can contain

the same, more or less rows than the first table contains. It will contain the

same number of rows, if for every row of the first table exact one single

row in the second table exists (e. g. when every customer has placed

exactly one single order). It will contain more rows, if there is more than

one matching row in the second table (e. g. when every customer has

placed at least one order or some customers have so many orders, that they

make up for other customers who didn’t place any order). It will contain

less rows, if some rows of the first table can’t be matched to rows in the

second table (e. g. when not all customers have placed orders and these

missing orders are not compensated by other customers). The latter is the

“danger” of inner joins: The result may skip some rows of one of the

tables (e. g. the result will not contain rows for customers without orders).

Outer join

Returns all the rows from one table and values for the columns of the other

table from matching rows. If no matching row can be found, the value for

the columns of the other table are null (and the row of the first table is still

kept). This is shown in a graphical manner in Figure 1-3.

Figure 1-3. Outer join

You can ask for either all rows of the first table in a chain of join operators

(left join), making the values of the second table optional. Or the other

way around (right join). A full outer join makes sure to return all rows

from both tables (with optional values from the other table).

For example, you want a list of all customers with their order sales from

the current year, even when the customer did not order anything in the

current year (and then display null or 0 as their order sales).

There is no similar set operator to achieve this. An outer join will have at

least so many rows as an inner join. It’s not possible that an outer join

(with the identical join predicated) returns less rows than an inner join.

Depending on the cardinality it might return the same number of rows (if

there is a matching row in the second table for every row in the first table)

or more (if some rows of the first table cannot be matched with rows of

the second table, which are omitted by an inner join).

Anti-join

An anti-join is based on an outer join, where you only keep the rows not

existing in the other table. The same ideas for left, right and full apply

here, as you can see in Figure 1-4.

Figure 1-4. Anti join

For example, you want a list of customers, who did not order anything in

the current year (to send them an offer they can’t refuse).

There is no similar set operator to achieve this. The anti-join delivers the

difference of an inner join compared to an outer join.

Cross Join

Creates a so-called cartesian product. Every single row of the first table is

combined with each and every row from the second table. In many

scenarios this does not make sense (e. g. combining every row of the sales

table with every customer, independent, if the row of the sales table is for

the customer or a different one). Practically you can create queries, which

show thinkable combinations. For example, by applying a cross join on

the sizes of clothes with all the colors, you get a list of all thinkable

combinations of sizes and colors (independent, if a product really is

available in this combination of size and color). A cross join can be a basis

for a left join or anti-join, to show explicitly point out combinations with

no values available. You can see an example of the result of a crosss join

in Figure 1-2

Do you feel dizzy because of all the different join options? Unfortunately, I

need to add one layer of complexity in the next section. As you just have

learned, when joining two tables, the number of rows in the result set might

be smaller, equal or higher than the number of rows of a single table involved

in the operation. The exact number depends on both, the type of the join and

the cardinality of the tables. In a chain of joins involving several tables, the

combined result might lead to undesired results, as you will learn in the next

section.

Join Path Problems

When you join the rows of one table to the rows of another table you can face

several problems, resulting in unwanted query results. The possible problems

are:

Loop

Fan Trap

Chasm Trap

Let’s take a closer look onto them:

Loop

You face this problem in a data model if there is more than one single path

between two tables. It does not have to be a literal loop in your entity-

relationship diagram, where you can “walk” a join path in a manner where

you return to the first table. We speak already of a loop, when a data

model is ambiguous. And this cannot only exist in very complex data

models, but also in the very simple setting of having just more than one

direct relationship between the same two tables. Think of a sales table

containing an order date and a ship data column (Figure 1-5). Both

columns have a relationship to the data column of the date table. If you

join the date table to the sales table on both, the order date and the ship

date, you will end up with only sales, which were ordered and shipped on

the very same day. Sales, which were ordered and shipped on different

days, will not show up as a result for your query. This might be an

unexpected behavior, returning too few rows.

Figure 1-5. Join Path Problem: Loop

The cure against a loop is to (physically or logically) duplicating the date

table and joining one date table on the order date and the other date table

on the ship date.

Chasm trap

The chasm trap (s. Figure 1-6) describes a situation in a data model, where

you have a converging many-to-one-to-many relationship. For example,

you could store the sales you are making over the internet in a different

table than the sales you are making through resellers. Both tables can

though be filtered over a common table, let’s say, a date table. The date

table has a one-to-many relationship to each of the two sales tables –

creating a many-to-one-to-many relationship between the two sales tables.

Figure 1-6. Join Path Problem: Chasm Trap

When you have more than one sale over the internet for a particular day,

you would join the same row of the date table multiple times. As there is

also a chance, that for this day you also sold several items to resellers,

every single internet sale will then be duplicated per row in the reseller

sales table. Your query would then report too high numbers of internet

sales and too high numbers of reseller sales.

The cure against the chasm trap problem depends on the tool you are

using. Jump to the chapters in the other parts of this book to read how you

solve this in DAX, Power Query / M and SQL.

Fan trap

You can step into a fan trap (Figure 1-7) in situations, where you want to

aggregate on a value on the one-side of a relationship, while joining a

table on the many side of the same relationship. For example, you could

store the freight cost in a sales header table, which holds information per

order. When you join this table with the sales detail table, which holds

information per ordered item of the order (which could be multiple per

order), you are duplicating the rows from the header table in the query

result, therefore duplicating the amount of freight.

Figure 1-7. Join Path Problem: Fan trap

The cure against the fan trap problem depends on the tool you are using,

too. Jump to the chapters in the other parts of this book to read how you

solve this in DAX, Power Query / M and SQL.

As you saw in the screenshots, drawing the tables and the cardinality of their

relationships can help in getting an overview about potential problems. The

saying “A picture says more than a thousand words.” applies to data models

as well. I introduce such Entity-Relationship Diagrams in the next section.

Entity-Relationship Diagrams (ERD)

An Entity-Relationship Diagram, or short ERD, is a graphical representation

of entities and the cardinality of their relationships. When a relationship

contains an attribute, it might be shown as a property of the relationship as

well. Over the years different notations have been developed

(https://www.lucidchart.com/pages/er-diagrams contains a nice overview

about the most common notations). In my point of view, it is not so important

which notation you are using – it’s more important to have an ERD at hand

for your whole data model. If the data model is very complex (= contains a

lot of tables) it is common to split it into sections, sub-ERDs.

Deciding on the cardinality of a relationship and documenting it (e. g. in the

form of an ERD) will help to find out, in which table you need to create the

foreign key. Look at the following examples:

The cardinality of the relationship between customers and their orders should

be a one-to-many relationship. One customer can possibly have many orders

(even when some customers only have a single order or others don’t have any

order yet). On the other hand, a particular order is associated with one single

customer only. This knowledge helps us to decide, if we need to create a

foreign key in the customer table to refer the primary key of the order table,

or the other way around. If the customer table contains the Order Key , it

will allow each customer to refer to a single order only. And, any order, could

be referenced by multiple customers. So, plainly, this approach would not

reflect the reality in a correct manner. That’s why we need a Customer

Key (as a foreign key) in the order table instead, as shown in Figure 1-8.

Then, every row in the order table, can only refer a single customer. And a

customer can be referenced by many orders.

Figure 1-8. Entity-Relationship Diagramm for tables customer and orders

In case that an order could be associated with more than a single customer,

we would face a many-to-many relationship. (As a customer could still have

more than one order.) Many-to-many relationships are typical if you want to

find a data model to represent employees and in which projects they are

engaged. Or collecting the reasons for a sale from your customers. The same

reason will be given for more than one sale. And a customer would tell you

several reasons, why she made the sale.

Typically, we would add a foreign key to neither the sales table nor the sales

reason table, but create a new table on its own, consisting of a composite

primary key: the primary key of the sales table (SalesOrderNumber and

SalesOrderLineNumber in our example, shown in Figure 1-9) and the

primary key of the sales reason table (SalesReasonKey). This new table

has a many-to-one relationship to the sales table (over the sales’ table primary

key) and a many-to-one relationship to the sales reason table table (over the

sales reason’s table primary key). It’s therefore called a bridge table, as it is

bridging the many-to-many relationship between the two tables and

converting it into two one-to-many relationships.

Figure 1-9. Entity-Relationship Diagramm for tables sales and sales reason

In the other parts of this book, you will learn about practical ways of creating

ERD for your (existing) data models.

Data Modeling Options

By now you should have a good understanding of the moving parts of a data

model. Therefore, it is about time to talk about the different options of how to

spread information over tables and relationships in a data model. This is,

what the next sections will teach you.

Types of Tables

Basically, you can assign each table in your data model to either of three

types:

Entity table

Rows in such a table represent events in the real world. These tables are

also referred to as business entity, data, detail or fact tables.

Examples include orders, invoices, etc.

Lookup table

They are used to store more detailed information, which you do not want

to repeat in every row of the entity table. These tables are also referred to

as main data or dimension.

Examples include customer, product, etc.

Bridge table

A bridge table dissolves a single many-to-many relation ship to two one-

to-many relationships. In many database systems, two one-to-many

relationships can be handled more gracefully than one many-to-many

relationship.

For example, to link a table containing all employees and a table

containing all projects.

Maybe you do not want to split your data into tables but keep it in one single

table. In the next section I will describe the pros and cons of such an idea.

A Single Table To Store It All

Having all necessary information in one single table has its advantages: It is

easy to read by humans. And therefore, it seems to be a natural way of storing

and providing information. If you take a random Excel-File, it will probably

contain one (or more tables) and all relevant information is listed as columns

per single table. Excel even provides you with functions (e. g. VLOOKUP) to

fetch data from a different table to make all necessary information available

at one glance. Some tools (e. g. Power BI Report Builder, with which you

create paginated reports) require you to collect all information into one single

query, before you can start building a report. If you have a table containing

all the necessary information, writing this query is easy, as no joins are

involved.

Power BI Desktop and Analysis Services Tabular are not those tools. They

require you to create a proper data model. And a data model always consists

of more than one single table. In the next section you will learn rules, how to

create several tables to achieve the goal of a redundancy-free data model.

Normal Forms

The term normalizing in the context of databases was introduced by Edgar F.

Codd, the inventor of relational databases. Personally, I don’t like the term

very much (as I think it is a confusing term, as it’s hard to tell, what’s normal

and what’s not, if you think about your real life in general, and database in

particular). But I like the idea and the concept behind this term very much:

The ultimate goal of normalizing a database is to remove redundancy, which

is a good idea in many situations.

If you would store the name, address, email, phone, etc. of the customer in

each and every order, you would store this information redundant. On one

hand, you would use more storage space as necessary, due to the duplicated

information.

On the other hand, this makes changes to the data over-complicated. You

would need to touch not just a single row for the customer, but many (in the

combined order table) if the content of an attribute changes. If the address of

a customer changes, you would need to make sure, to change all occurrences

of this information over multiple rows. If you want to insert a new customer,

who just registered in our system, but didn’t order something yet, you have to

think of which placeholder value to store in the columns which contain the

order information (order number, amount, price, etc.) until an order is placed.

If you delete an order, you have to pay attention, to not accidently also

remove the customer information, in case this was the customer’s only order.

To normalize a database, you apply a set of rules, to bring it from one state,

to the other. Here I will show you the rules to bring a database into third

normalform, which is the most common normalform. If you want to dig

deeper, you will find books explaining the Boyce-Codd-Normalform, fourth

and fifth normalform, which I consider mainly as academic, and less practical

relevant.

First Normalform (1NF)

You need to define a primary key and remove repeating column values.

Second Normalform (2NF)

Non-key columns are fully dependent on the primary key.

Third Normalform (3NF)

All attributes are directly dependent on the primary key.

The following sentence helps me to memorize the different rules: Each

attribute is placed in an entity where it is dependent on the key, the whole

key, and nothing but the key … so help me, Codd.

Let’s apply those rules on a concrete example:

Table 1-2. A table violating the rules of normalization

StudentNr Mentor MentorRoom Course1

1022 Jones 412 101-07

4123 Smith 216 201-01

This is one single table, containing all the necessary information. In some

situations, such a table is very useful, as laid out in “A Single Table To Store

It All”. But this is not a data model. And it clearly violates all three rules of

normalization.

In this example we see that there are repeating columns for the courses a

student attends (columns Course1 , Course2 , and Course3). Sometimes

information is not split into several columns, but all information is stored in a

single column, separated by commas, or stored as JSON or XML in a single

text column would (e. g. think of a list of phone numbers). These examples

violate the rule of the first normalform, as well. We need to deserialize the

information, and split the information into rows instead, so that we get one

single column with the content split out into separate rows. This transforms

the table towards the first normal form (1NF).

Moreover, we need to find a primary key, which uniquely identifies every

row of this new table. In this first step we do not introduce a new (surrogate)

key but can live with a composite primary key. The columns, which make up

the primary key are printed in monospaced (StudentNr and Course).

Table 1-3. A table in first normalform (with a composite primary key consisting of StudentNr and
Course)

StudentNr Mentor MentorRoom Course

1022 Jones 412 101-07

1022 Jones 412 143-01

1022 Jones 412 159-02

4123 Smith 216 201-01

4123 Smith 216 211-02

4123 Smith 216 214-01

To transform this table into second normalform (2NF), we start at a table in

first normalform (1NF) and have to guarantee, that all columns are functional

dependent on (all columns of) the primary key. A column is functional

dependent on the primary key if a change in the content of the primary key

also requires a change in the content of the column. A look on the table

makes it clear, that the column Mentor is functional dependent on the

column StudentNr , but apparently not on the column Course . No matter

which courses a student attends, his or her mentor stays the same. Mentors

are assigned to students in general, not on a by-course basis. And the same

applies to the column MentorRoom . So, we can safely state, that columns

Mentor and MentorRoom are functional dependent on only the

StudentNr , but not on Course . Therefore, the current design violates the

rules for second normalform. To achieve the second normalform, we have to

split the table into two tables. One containing columns StudentNr ,

Mentor , and MentorRoom +(with +StudentNr +as its single

primary key). A second one, containing +StudentNr and

Course , only. Both columns form the primary key of this table.

Table 1-4. Table Student in second normalform (with primary key Stud
entNr)

StudentNr Mentor MentorRoom

1022 Jones 412

4123 Smith 216

Table 1-5. Table StudentCourse in second
normalform (with a composite primary key
consisting of StudtenNr and Course)

StudentNr Course

1022 101-07

1022 143-01

1022 159-02

4123 201-01

4123 211-02

4123 214-01

The rules for the third normalform (3NF) require that there is no functional

dependency on non-key columns. In our example, the column MentorRoom

is functional dependent on column Mentor (which is not the primary key),

but not on StudentNr (which is the primary key). A mentor keeps using

the same room, independent from the mentee student. Therefore, we have to

split now into three tables, carving out columns Mentor and MentorRoom

into a separate table (with Mentor as the primary key). The second table

contains StudentNr (primary key) and Mentor (foreign key to the newly

created table). And finally, the third, unchanged table, contains StudentNr

(foreign key) and Course (which both form the primary key of this table).

Table 1-6. Table Student in third normalform
(with primary key StudentNr)

StudentNr Mentor

1022 Jones

4123 Smith

Table 1-7. Table Mentor in second normalform
(with primary key Mentor)

Mentor MentorRoom

Jones 412

Smith 216

Table 1-8. Table StudentCourse was already in
third normalform as well (with a composite
primary key consisting of StudentNr and Cour
se)

se)

StudentNr Course

1022 101-07

1022 143-01

1022 159-02

4123 201-01

4123 211-02

4123 214-01

This final version is free of any redundancy. Every single piece of

information is only stored once. The data model is though rather complex.

This complexity comes with a price: It is hard to understand. It is hard to

query (because of many necessary joins). And queries might be slow

(because of many necessary joins). Therefore, I will introduce you to

Dimensional Modeling in the next section.

Dimensional Modeling

Data models in third normalform (= fully normalized) avoid any redundancy,

which makes them perfect for storing information for applications. Data

maintained by applications, can rapidly change. Normalization guarantees,

that a change has only to happen in one single place (= content of one single

column in one single row in on single table).

Unfortunately, normalized data models are hard to understand. If you look on

the ERD of a model for an even simple application, you will be easily

overwhelmed by the number of tables and relationships between them. It’s

not rare that the printout will cover the whole wall of an office and that

application developers who use this data model are only confident about a

certain part of the data model.

Such data models are also hard to query. As in the process of normalizing

multiple tables get created, querying the information in a normalized data

models requires to join multiple tables together. Joining tables is expensive. It

requires a lengthy query to be written (the lengthier, the higher the chance for

making mistakes; if you don’t believe me, re-read the chapters about “Joins”

and “Join Path Problems”) and it requires to physically join the outspread

information from different tables by the database management system. The

more joins, the slower the query.

Therefore, let’s introduce Dimensional Modeling. You can look at this

approach as a (very good) compromise between a single table and a fully

normalized data model. Dimensional models are sometimes referred to as

denormalized models. As less as I like the term normalized, as much do I

dislike the term denormalized. Denormalizing could be easily misunderstood

as the process to fully reverse all steps done during normalizing. That’s

wrong. A Dimensional Model reintroduces some redundancy but does not

undo all the efforts of bringing a data model into third normal form.

Remember, the ultimate goal is to create a model, which is easy to understand

and use (by the report creators) and which allows for fast query performance.

It is very common for data warehouses (DWH), OLAP systems (Online

Analytical Processing), also called cubes, and is the optimal model for Power

BI and Analysis Services Tabular.

For designing a dimensional model, it is crucial to identify an attribute (or

table) either as a dimension (hence the name Dimensional Modeling) or as a

fact:

Dimension

A dimension table contains answers to questions like: How? What?

When? Where? Who? Why? Those answers are used to filter and group

information in a report. This kind of table can be wide (= it can contain

loads of columns). Compared to facts, dimension tables are relatively

small in terms of the number of rows (“short”). Dimension tables are on

the “one” side of a relationship. They have a mandatory primary key (so

they can be referenced by a fact table) and contain columns of all sorts of

data types. In a pure Star Schema, dimension tables do not contain foreign

keys.

Fact

A fact table tracks real world events, sometimes called transactions,

details, or measurements. It is the core of a data model, and its content is

used for counting and aggregating in a report. You should pay attention,

that you keep a fact table narrow (only add columns if really necessary), as

compared to dimensions, fact tables are relatively big in terms of the

number of rows. Fact tables are on the “many” side of a relationship. If

there is not a special reason, then a fact table will not contain a primary

key, because a fact table is not – and never should be – referred by another

table and every bit you save in each row, sums up to a lot of space, when

multiplied by the number of rows. Typically, you will find foreign keys

and (mostly) numeric columns. The latter can be of additive, semi-additive

or non-additive natures. Some fact tables contain transactional data, others

snapshots or aggregated information.

Depending on how much you denormalize the dimension tables, you will end

up with a Star Schema or a Snowflake Schema. In a Star Schema dimensional

tables do not contain foreign keys. All relevant information is already stored

in the table in a fully denormalized fashion. That’s the preferred way for a

dimensional model. Only if you have certain reasons, you might keep a

dimension table (partly) normalized and split information over more than one

table. Then some of the dimension tables contain a foreign key. Star Schema

is preferred over a Snowflake Schema, because in comparison a Snowflake

Schema

has more tables (due to normalization)

takes longer to load (because of the bigger amount of tables)

makes filter slower (due to necessary additional joins)

makes the model less intuitive (instead of having all information for a

single entity in a single table)

impede the creation of hierarchies (in Power BI / Analysis Services

Tabular)

Of course, a dimension contains redundant data, due to denormalizing. In a

data warehouse scenario this is not a big issue, as there are not several

processes who add and change rows to the dimension table, but only one

single one (as explained below in section “Extract, Transform, Load”).

The number of rows and columns for a fact table will be given by the level of

granularity of the information you want or need to store within the data

model. It will also give the number of rows of your dimension tables. The

next section talks about this important part.

Granularity

Granularity means the level of detail of a table. On the one hand, we can

define the level of detail of a fact table by the foreign keys it contains. A fact

table could track sales per day, or it could track sales per day and product, or

by day, product and customer. This would be three different levels of

granularity.

On the other hand, we can also look on the granularity in the following terms:

Transactional fact

The level of granularity is an event. All the details of the event are stored

(not aggregated values).

Aggregated fact

In an aggregated fact table some foreign keys are left out and the rows are

grouped and aggregated on the remaining foreign keys. This can make

sense when you want to save storage space and/or make queries faster. An

aggregated fact table can be part of a data model additionally to the

transactional fact table, when the storage space is not so important, but

query performance is. In the chapters about performance tuning you will

learn more about how to improve query time with the help of aggregation

tables.

Periodic snapshot fact

When you do not reduce the number of foreign keys, but reduce the

granularity of the foreign key on the date table, than you have created a

periodic snapshot fact table. For example, you keep the foreign key to the

date table, but instead of storing events for every day (or multiple events

per day) you reference only the (first day of the) month.

Accumulated snapshot fact

In an accumulated snapshot table aggregations are done for a whole

process. Instead of storing a row for every step of a process (and storing e.

g. the duration of this process) you store only one single row, covering all

steps of a process (and aggregating all related measures, like the duration).

No matter, which kind of granularity you choose, it’s important that the

granularity of a table stays constant for all rows of a table. For example, you

should not store aggregated sales per day in a table, which is already on the

granularity of day and product. Instead, you would create two separate fact

tables. One with the granularity of only the day, and a second one with

granularity of day and product. It would be complicated to query a table, in

which some rows are on transactional level, but other rows are aggregated.

This would make the life of the report creator hard, and not easy.

Keep also in mind, that the granularity of a fact table and the referenced

dimension table must match. If you store information by month in a fact

table, it is advised to have a dimension table with the month as the primary

key.

Now that we know how the data model should look like, it is time to talk

about how you can get the information of your data source into the right

shape. The process is called “Extract, Transform and Load” and I introduce it

in the next section. In later chapters I will show you concrete tips, tricks and

scripts of how to use Power BI, DAX, Power Query and SQL to implement

transformations.

Extract, Transform, Load

By now I have hopefully made it clear, that a data model which is optimized

for an application looks very different from a data model for the same data,

which is optimized for analytics. The process of converting the data model

from one type to another is called Extract, Transform and Load (ETL):

Extract

“Extract” means to get the data out of the data source. Sometimes the data

source offers an API, sometimes it is extracted as files, sometimes you can

query tables in the application’s database.

Transform

Transforming the source data starts with easy tasks as giving tables and

columns user friendly names (as nobody wants to see “EK4711” as the

name of a column in a report) and covers data cleaning, filtering,

enriching, etc. This is where converting the shapes of the tables into a

dimensional model happens. In the chapters about “Building a Data

Model” you will learn concepts and techniques to achieve this.

Load

As the source system might not be available 24/7 for analytical queries (or

ready for such queries at all) and transformation can be complex as well, it

is recommended to store the extracted and transformed data in a way,

where it can be queried easily and fast, e. g. in a Power BI dataset in the

Power BI Service or in an Analysis Services database. Storing it in a

relational data warehouse (before making it available to Power BI or

Analysis Services) makes sense in most enterprise environments.

The ETL process is sometimes also described as the kitchen of a restaurant.

The cooks have dedicated tools to process the food and put in all their

knowledge and skills to make the food both, good-looking and tasteful, when

served on a plate to the restaurant’s customer. This is a great analogy to what

happens during ETL: We use tools and all our knowledge and skills to

transform raw data into savory data which makes appetite for insights (hence

the name of the author’s company). Such data can then easily be consumed to

create reports and dashboards.

As the challenge of extracting, transforming, and loading the data from one

system to another is widespread, there are plenty of tools available. Common

tools in Microsoft’s Data Platform family are SQL Server Integration

Services, Azure Data Factory, Power Query, and Power BI dataflows. You

should have one single ETL job (e. g. one SQL Server Integration Services

package, one Azure Data Factory pipeline, one Power Query query or one

Power BI dataflow) per entity in your data warehouse. Then it is

straighforward to adopt the job in case the table changes.

Sometimes people refer not to ETL, but to ELT or ELTLT, as the data might

be first loaded into a staging area and then transformed. I personally don’t

think it so important if you first load the data and then transform it, or the

other way around. This is mostly given as a fact by which tool you are using

(if you need or should first persist data before you transform it, or if you can

transform it “on-the-fly” when loading the data). The only importance is that

the final result of the whole process must be accessible easily and fast by the

report users, to make their life easier (as postulated in the introduction to this

chapter).

Implementing all transformations, before users query the data is crucial. And

I think it is crucial as well to apply transformations as early as possible. If

you possess a data warehouse, then implement the transformations there (via

SQL Server Integration Services, Azure Data Factory, or simply views). If

you don’t have (access to) a data warehouse, then implement the

transformations in Power BI data flow or Power Query in a Power BI dataset.

Only implement the transformations in the report layer as the last resort

(better to implement it there instead of not implementing it at all). The reason

for this rule is, that, the “earlier” in your architecture you implement the

transformation, the more tools and users can use them. Something

implemented in the report only, is only available to the users of the report. If

you need the same logic in an additional report, you need to re-create the

transformation in the additional report (and face all consequences of code-

duplication, like higher maintenance effort for code-changes and the risk of

different implementations of the same transformation, leading to different

results). If you do the transformation in Power Query (in Power BI or in

Analysis Services), then only users and tools with access to the Power BI

dataset or Analysis Services Tabular database benefit from them. While,

when you already implement everything in the data warehouse layer (which

might be a relational database but could be a data lake or delta lake as well or

anything else which can hold all the necessary data and allows for your

transformations), then a more widespread population of your organization

have access to clean and transformed information, without repeating

transformation again (and you connect Power BI to those tables and don’t

need to apply any transformations).

Every concept and idea I introduced so far is based on the great work of two

giants of data warehousing: Ralph Kimball and Bill Inmon. It is time that I

introduce you to them.

Ralph Kimball and Bill Inmon

A book about data modelling would not be complete, without mentioning

(and referencing to) Ralph Kimball and Bill Inmon. Both are the godfathers

of data warehousing. They invented many concepts and solutions for

different problems you will face when creating an analytical database. Their

approaches have some things in common but show also huge differences. On

their differences they never found compromises and they “fought” about

them (and against each other) in their articles and books.

For both, dimensional modelling (facts and dimensions) play an important

role as the access layer for the users and tools. Both call this layer a Data

Mart. But they describe the workflow and the architecture to achieve this

quite differently.

For Ralph Kimball the data mart comes first. A data mart contains only what

is needed for a certain problem, project, workflow, etc. A data warehouse

does not exist on its own but is just the collection of all available data marts

in your organization. Even when “agile project management” was not (yet) a

thing, when Ralph Kimball described his concept, they clearly match easily.

Concentrating in smaller problems and creating data marts for them allows

for quick wins. Of course, there is a risk that you do not always keep the big

picture in mind and end up with a less consistent data warehouse, as

dimensions are not as conformed as they should be over the different data

marts. The Enterprise Data Bus’s task is to make all dimensions conformed.

Ralph Kimball retired in 2015, but you find useful information at

https://www.kimballgroup.com/ and his books are still worth a read. Their

references and examples to SQL are still valid. He didn’t mention Power BI

or Analysis Services Tabular, as this was only emerging then.

On the opposite, Bill Inmon favors a top-down approach: You need to create

a consistent data warehouse in first place. This central database is called the

Corporate Information Factory and it is fully normalized. Data marts are

then derived from the Corporate Information Factory where needed (by

denormalizing the dimensions). While this will guarantee a consistent

database and data model, it surely will lead to a longer project duration while

you collect all requirements and implement them in a then consistent fashion.

His ideas are collected in “Building a Data Warehouse” (2005, Wiley) and

are worth read as well. Bill Inmon also supports the Data Vault modeling

approach (“Data Vault & Other Anti-Patterns”) and is an active publisher of

books around data lake architecture.

Over the years many different data modelling concepts have been developed.

And many different tools to build reports and support ad-hoc analysis have

been created. In the next section I will describe them as anti-patterns. Not

because they are bad in general, but because Power BI and Analysis Services

Tabular are optimized for the star-schema.

Data Vault & Other Anti-Patterns

I will not go into many details of how you can implement a Data Vault

architecture. Its though important to lay out, that a Data Vault is merely a

data modeling approach which makes your ETL flexible and robust against

changes in the structure of the data source. Data Vault’s philosophy is to

postpone cleaning of data to the business layer. As easy this approach makes

the live of the data warehouse / ETL developers, as hard it will make the life

of the business users. But remember: The idea of this book is to describe how

you can create a data model which makes the end-users life easier.

A Data Vault model is somewhere between third normal form and a star

schema. Proponents of the Data Vault claim rightfully, that such a data model

can also be loaded into Power BI or Analysis Service Tabular. The problem

is though: You can load any data model into Power BI and Analysis Services

Tabular – but you will pay a price when it comes to query performance (this

happened to me with the first data model I implemented with Power BI; even

when the tables contained just a few hundred rows, the reports I built where

really slow). You will sooner or later suffer from overcomplex DAX

calculation, too.

That’s why I try to strongly convince you, not using any of the following data

model approaches for Power BI and Analysis Services Tabular:

Single table

I already described my reasoning in “A Single Table To Store It All”.

A table for every source file

This is a trap non-IT users easily step into. A table should contain

attributes of one single entity only. Often, a flat file or an Excel

spreadsheet contains a report and not information limited to one single

entity. Chance are high, that when you create a data model with a table per

file, the same information is spread out over different tables and many of

your relationships show a many-to-many cardinality due to a lack of

primary keys. Applying filters on those attributes and writing more than

just simple calculations can quickly start to be a nightmare. Sometimes

this “model” is referred to as OBT (one big table).

Fully normalized schema

Such a schema is optimized for writing, not optimized for querying. The

number of tables and necessary joins makes it hard to use and leads to

slow query response time. Chances are high that query performance is less

than optimal and that you will suffer from “Join Path Problems”.

Header – Detail

Separating e. g. the order information and the order line information into

two tables requires to join two relatively big tables (as you will have loads

of orders – and loads of order lines, representing the different goods, per

order). This additional join will make queries slow and DAX more

complex than necessary, compared to combining the header and detail

table into one single fact table. The joined table will contain as many rows

as the detail table already has and as many columns as the two tables

combined, except for the join key column, but will save the database

management system from executing joins over two big tables.

Key-Value

A Key-Value table is a table with basically just two columns: a key

column (containing e. g. the string “Sales”) and a value column

(containing e. g. “100”). Such a table is very flexible to maintain (for new

information you just add a new row with a new key, e. g. “Quantity”), but

it is very hard to query. In chapter 3 I write in length about the challenges

key-value-pair tables bring, and how to overcome them in order to

transform them into a meaningful table.

The reason why I describe these as anti-patterns is not that these modelling

approaches, in an objective point of view, per se are worse than star schema.

The only reason is, that many reporting tools benefit from a star schema so

much, that it is worth to transform your data model into one. The only

exceptions are tools like Power BI Paginated Reports, which benefit from

(physical or virtual) single tables containing all the necessary information.

The VertiPaq engine (which is the storage engine behind Power BI, Analysis

Services Tabular, Excel’s PowerPivot and SQL Server’s Column Store

index) is fully optimized for star schema with every single fiber. You should

not ignore this fact.

While you can write a letter in Excel and do some simple calculations in a

table in a Word document, there are good reasons why you would write a

letter with Word and create the table and its calculations in Excel. You would

not start complaining how hard it is to write a letter in Excel, or that are many

features to do your table calculations are missing in Word. Your mindset

towards Power BI should by similar: You can use any data model in Power

BI, but you should not start complaining about the product unless you have

your data model as star schema.

Key Takeaways

Congratulations on finishing the first chapter of this book. I am convinced

that all the described concepts are crucial for your understanding of data

models in general, and for all the transformations and advanced concepts I

will talk about in the rest of the book. Here is a short refresher of what you

learned so far:

You learned about the basic parts of a data model: tables, columns,

relationships, primary keys, and foreign keys.

We talked about different ways of combining tables with the help of set

operators and joins, and which kind of problems you can face when

joining tables.

Normalized data models are optimized for write operations, that’s why

they are the preferred data model for application databases. Dimensional

modelling re-introduces some redundancy to make them easier to

understand and to allow for faster queries (as there are less joins

necessary).

Transforming of the data model (and much more) is done during the ETL,

which extracts, transforms and loads from data sources into the data

warehouse.

I gave you a rough overview about the contrary ideas of the two

godfathers of data warehouses, Ralph Kimball and Bill Inmon.

At the end I pointed out, why it is so important to stick to a star schema,

when it comes to Power BI and Analysis Services Tabular. Other

approaches have their value – but they or not optimal for the VertiPaq

engine, which handles all the data queried in Power BI, Analysis Services

Tabular, Excel’s PowerPivot and SQL Server’s Column Store index.

Chapter 2. Building a Data Model

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

Traditionally we speak of OLTP (On*l*ine *T*ransactional *P*rocessing)

databases on the one hand and OLAP (*O*n*l*ine *A*nalytical

*P*rocessing) databases on the other hand. The term “online” is not related to

the internet here, but means, that you query a database directly instead of

triggering and waiting for an asynchronous batch job, which runs in the

background – something you might only have seen in your career when you

are about my age (or even older). “Transactional” means that the purpose of

the database is to store real-world events (transactions). This is typical for

databases behind any application your mind can come up with: the software

your bank uses to track the movement of money or the retailer which keeps

track of your orders and their delivery. Databases for such use cases should

avoid redundancy under all circumstances: A change of your name should not

end up in a complicated query to persist the new name through several tables

in the database, but only in one single place.

This book concentrates on analytical queries in general and on Power BI and

Analysis Services in particular. Therefore, when I speak of a data model in

this and all following chapters, I mean data models built for analytical

purposes, OLAP databases. For Power BI and Analysis Services the optimal

shape of the data model is the dimensional model. Such databases hold the

data for the sole purpose of making analytical queries and reports easy,

convenient and fast (Make the report creators life easier.).

Building an analytical database (and transforming data from data sources

which were built with other goals in mind into a dimensional model) is

mostly not easy and can be a challenge. This chapter will help you to

understand those challenges and how to overcome them. As you already

learned in Chapter 1, you need to normalize the fact tables and denormalize

the dimension tables, which is what I start describing in the next section. You

should also add calculations, transform flags and indicators into meaningful

information to make the data model ready to use for reports. I recommend

that you build a dedicated date (and maybe an additional time) dimension so

that the report creator does not need to fumble with a date column and extract

the year, month etc. for filters and groupings. Some dimensions may play

more than one role within a data model, and you will learn how to model

such cases. We will discuss the concepts of slowly changing dimensions and

how to bring hierarchies into the right shape, so they can be used in Power

BI.

Remember from Chapter 1: Normalizing and denormalizing are terms to

describe to remove or to add redundancy to a data model. A database for the

purpose of storing information for an application should be fully normalized.

Analytical databases, on the other side, should contain redundant

information, where appropriate. In the next two sections you will learn where

redundancy should be avoided in an analytical database as well and where

you should explicitly make information redundant.

Normalizing

Normalizing means to apply rules to the data model with the ultimate goal to

avoid redundancy. In Chapter 1 you learned about the importance of

normalizing a data model and why this is so important for OLTP (Online

Transactional Processing) databases.

Normalizing is also necessary for fact tables in a Dimensional Model. As you

learned in Chapter 1, fact tables are the biggest tables in a data warehouse in

terms of number of rows, and they constantly get more rows added. Every bit

and byte we can save within a single row by optimizing the amount and type

of columns we have, is more than welcomed. Think about the following: If

you save a single byte per row in a table containing one million rows, you

save one megabyte of data. If you save ten bytes in a table containing one

billion rows, you save 10 gigabytes of data for this table. Less data will put

less pressure on the given infrastructure. And scanning less data will also lead

to faster reports.

Only when you are able to identify a table as a fact table you can fully

normalize them, just as described in Chapter 1. Typically, if your data source

is a flat file (e. g. an Excel spreadsheet someone created or extracted from a

database system) chances are high, that a model created as one table per

Excel worksheet will be too denormalized, hence the worksheets need to be

normalized. The extreme case is that of a data model consisting of one big

table (OBT), where all the information resides in one single table. You

should avoid this, as you do not want to have any tables in the model, which

are long (= many rows) and wide (= many columns) simultaneously.

You will also face situations where details for an entity are spread over

different sources, tables or files. That’s where you need to denormalize.

Denormalizing

Denormalizing means that you intentionally introduce redundancy into a

table: The same piece of information is repeated over several rows within a

table, because several rows share the same information (e. g. as several

customers reside in the same country or several products are part of the same

product category). This happens every time you add a column to a table,

which contains information not unique per primary key of the table.

When you model a natural hierarchy within one single table, you will face

redundancy. For example, one product category can consist of more than one

single product. If you store the product name together with the category name

in a single table, the name of a category will appear in several rows.

Or think of a table containing a row for each day of a year with a column

containing the date. Adding a column for the year or the month will introduce

redundancy as a given year or a given month will appear in several rows. On

top of that, storing the year and month additionally to the date is redundant

from the point of view that the year and the month can always be calculated

by applying a function on the date column. In an OLTP database such a

redundancy is unwanted and should be avoided under all circumstances. In an

analytical database this type of redundancy is wanted and recommended, for

several reasons:

Having all information about an entity in one single place (table) is user

friendly. Alternatively, e. g. product related information would be spread

out over several tables like, Product , Product Subcategory , and

Product Category .

Additionally, having all information pre-calculated at hand as needed is

more user-friendly (instead of putting the burden onto the report-user and

the used report-tool to calculate the year from a date, for example).

Joining information over several tables is expensive (in terms of query

performance and pressure on the resources). Reducing the number of joins

to satisfy a query will improve the performance of the report.

The relatively small size of dimensions allows for added columns without

a huge impact onto overall size of the model. (In the case of Power BI and

Analysis Services this problem is even smaller, as the storage engine’s

automatic compression algorithm is optimized for such scenarios).

Therefore, the backdraft of denormalizing is not as huge of a problem

when it comes to storage space, as you might think.

Power BI Desktop and Analysis Services Tabular are optimized for a fully

denormalized star-schema.

Long story, short: All dimension tables should be fully denormalized, to form

a star-schema.

Furthermore, you should enrich the source’s data by adding all sorts of

calculations (again, to remove the burden of creating these from the report-

user). That’s what I will discuss in the next section.

Calculations

It’s a good idea to add a calculation as early as possible in your stream of

data. Keep in mind though, that only additive calculations can be (pre-

)calculated in the data source. Semi- and non-additive calculations must be

calculated as measures (in case of Power BI and Analysis Services this

means: in the DAX language):

Additive

Many calculations can be calculated on top of results of lower granularity.

The given quantity sold in a day can be added up to monthly and yearly

results. The sales amount (calculated as the quantity multiplied by the

appropriate price) can be added over several products.

Semi-additive

The result of a semi-additive calculation can be aggregated over all

dimensions, except the date dimension. A typical example is stock levels.

Stock levels are stored as the number of products available on a certain

day. If you look at a certain day you can add the stock levels over several

warehouses for a product: You can safely say that we have 5 kg of vanilla

ice cream if there is 3kg in one freezer and another 2kg in a second

freezer. But it does not make sense to add up the individual stock level of

different days: When we had 5kg yesterday and today only 1kg is left,

then adding these two numbers up to 6kg gives a meaningless number.

Thus, the calculation formula needs to make sure, to use only the data

from the most current day within the selected timeframe.

Non-additive

Some calculations cannot be aggregated at all. This covers distinct counts

and all calculations containing a division operator in its formula (e. g.

average, percentage, ratio). Adding up results of such a calculation does

not make any sense: Instead of aggregating the results, the formula must

be executed upon the aggregated data: counting the distinct customers

over all days of the month (instead of adding up the number of distinct

customers per day) or dividing the sum of margin by the sum of sales

amount (instead of dividing the margin by the sales amount of each

individual sales row and then summing up those results).

Formulas can also be applied to non-numeric values. In the next chapter you

will find out why and how this should be done.

Flags and Indicators

In most cases, reports showing rows of “Yes” and “No” values or

abbreviations like “S” or “M” are hard to read. Therefore, all flags and

indicators delivered by the source system must be converted into meaningful

text. For example:

FinishedGoodFlag with content 0 or 1 should be transformed accordingly

into text “no salable” or “salable”.

Productlines “R”, “M”, “T”, or “S” should be transformed accordingly

into text “Road”, “Mountain”, “Touring”, or “Standard”.

Column Class with values “H”, “M”, or “L” should be transformed

accordingly into “High”, “Medium”, or “Low”.

Styles containing “W”, “M”, or “U” should be transformed accordingly

into “Women’s”, “Men’s”, or “Unisex”.

In general blank (or null) should be avoided, but replaced by a meaningful

text: “unknown”, “N/A”, “other”, etc. Depending on the context, a blank

value could be transformed to different texts (to distinguish an “unknown”

value from “other”) within the same column.

Do you create reports on data which is not related to any point in time?

Writing this book, I thought hard about it and could not remember a single

report I created which did not either filter or aggregate on dates, or even both.

Of course, this does not mean that such report does not exist. But it makes me

confident that such reports are not so common. Therefore, you should prepare

your data model to make handling date and time easy for the end-user. The

next section is exactly about this.

Time and Date

It’s very rare to build a data model upon data, which does not bear any

relation to a point in time. Therefore, a date dimension is very common in the

majority of data models. The idea of a date dimension is two-folded:

Create columns for all variants of a date information which will be later

used in the reports. Year, month number, month name, name of the

weekday, week number, etc. are common examples. The report tool shall

not cover this, but just show the pre-calculated columns. Therefore, add a

column for every variation needed in the report (e. g. “December 2023”,

“2023-12”, “Dec”, …).

Having a table with one row per day of a calendar year. This allows you to

calculate a duration in days and is mandatory if you want to use the built-

in time intelligence functions in DAX (which we will cover in

Chapter 10).

Week numbers can be tricky, by the way. There are basically two definitions

– which only deviate from each other in certain years. If you do not pay

attention to the right calculation of the calendar week, you might end up with

a sudden surprise in one year. Wikipedia got you covered in case you need to

find out which definition is the one the report users expect

(https://en.wikipedia.org/wiki/ISO_week_date).

A time dimension (having rows for hours and minutes within a day) on the

other hand is in fact very rare in my experience. It’s important that you

separate the time dimension from the date dimension, so both can be filtered

independently from each other. Furthermore, splitting a timestamp into a date

and a time portion, minimizes the number of distinct rows: To cover a full

calendar year, you need 365 (or 366 for leap years) rows in the date

dimension, and 1440 (= 24 hours multiplied by 60 minutes) rows for a time

dimension to cover every minute. For every new year, you add another 365

(or 366) rows in the date table. If you stored this information together in one

single datetime table, you would end up with 525600 (365 days times 24

hours times 60 minutes) rows. For every year, you would add another 525600

rows in the datetime table.

Talk to your end-users to find out, on which granularity level of the time they

need to filter and group information. If the lowest granularity is e. g. only by

hour, make sure to round (or trim) the timestamp in your fact table to the

hour and create a time dimension with only 24 rows.

Role-Playing Dimensions

Sometimes one single entity can play different roles in a data model. A

person could simultaneously be an employee and a customer as well. A year

could have the meaning of an order year and/or the shipping year. These are

examples of role-playing dimensions.

Assigning different roles can be achieved with the following approaches:

Load the table only once, and then assign different roles by creating

several relationships between the dimension table and the fact table,

according to its roles. For example, you create two filter relations between

the Date dimension and the Sales fact table. One where you connect

the Date ’s date column first with the Sales ’ order date and second

with the Sales ’ ship date. The report creator needs then a way to

specify, which role the dimension should play in a visualisation.

Load the table twice into the data model, under two different names. For

example, you would load the Date table first as Order Date and

second as Ship Date table. (Make sure, that the column names are

unique throughout the data model, by e. g. adding the Order or Ship

prefix to the column names as well: Year becomes Order Year etc.)

You would then create filter relationships between the Sales fact and

those two tables. The report creator chooses either the Order Date or

the Ship Date table according to the needs.

Slowly Changing Dimensions

The value for a column of a row in a dimension table is usually not constant

but can change over time. The question we need to clarify with the business

users is if it is important to keep track of changes – or if we can just overwrite

the old information with the new information. A decision needs to be made

per column of a dimension table (maybe the business wants to overwrite any

changes of the customer’s name but keep a historic track of the changes of

the customer’s address).

We talk about slowly changing dimensions when chances of the attributes are

happening only once in a while. If the information for a dimension changes

often (e.g. every day) you might capture the changes of this attribute not in

the dimension table, but in a fact table instead. Unfortunately, there is not a

clear line here on how to distinguish slowly changing dimensions from rapid

changing dimensions.

While Ralph Kimball was very creative with creating new terms for the

challenges of analytical databases, he came up with a rather boring way of

naming the different types of slowly changing dimensions, he just numbered

them:

Type 0: Retain Original

Usually only a small set of dimensions (and their columns) shall never

change. For example, August 1 2023 will always be a Tuesday. And will

always be part of month August and year 2023. This will never change –

it’s not necessary to implement a way of updating this information.

Type 1: Overwrite

When the name of a customer changes, we want to make sure to correct it

and display the new name in all reports – even in reports for that past

(where an old version of the report may show the old name; re-creating the

same report now will show the new name). Maybe we want to store some

additional columns in the table, like, when the change happened and who

(or which ETL process) did the change. In Table 2-1, you see a table

containing three rows, enriched with a ChangedAt and a DeletedAt

column, which represent the day of modification (or creation) and

invalidation, respectively.

Table 2-1. SCD Type 1 before the change

AlternateKey Region ChangedAt DeletedAt

0 NA 2023-01-01

1 Northwest 2023-01-01

10 United

Kingdom

2023-01-01

Let’s assume, that we get the new data, as laid out in Table 2-2: the row

for region “NA” was removed from the data source, the name of region

“Northwest” was translated to German language “Nordwest”, the row for

“United Kingdom” stayed unchanged and a new row for “Austria” was

added.

Table 2-2. SCD Type 1 changed rows

AlternateKey Region

1 Nordwest

10 United Kingdom

11 Austria

As you can see in Table 2-3, in a Type 1 solution, the row for “NA” will

not be removed, but marked as deleted by setting the DeletedAt

column to the timestamp of removal. The row for “Northwest” will be

changed to “Nordwest” and the ChangedAt timestamp will be updated.

“United Kingdom” will stay unchanged. And the new row for “Austria” is

added, with a ChangedAt set to the current day.

Table 2-3. SCD Type 1 after the changes

AlternateKey Region ChangedAt DeletedAt

0 NA 2023-01-01 2023-08-15

1 Nordwest 2023-08-15

10 United

Kingdom

2023-01-01

11 Austria 2023-08-15

This is a very common type of slowly changing dimension.

Type 2: Add New Row

If you want to update a column, but need to guarantee, that a report made

for the past does not reflect the change (but stays the same, even if created

today), then we need to store two versions. One version, reflecting the

status before the change, and a new version, reflecting the status after the

change. An example could be the address (and region) of a customer. If

the customer moves, maybe we only want to assign sales made after the

customer moved to the new region but want to keep all previous sales in

the old region.

Slowly Changing Dimension Type 2 achieves this by creating a new row in

the dimension table for every change we want to keep track. It is important

to mention that for this solution we need to have a surrogate key as the

primary key in place, as the business key will not be unique after the first

change. Customer “John Dow” will have two rows in the customer table.

One row before the change, one row after the change (and several further

rows after more changes happened). All sales before the change use the

old versions surrogate key as the foreign key. All sales after the change

use the new versions surrogate key as the foreign key. Querying is

therefore not big of an issue (as long as the report users do not need to

select a certain version of the customer to be used for a report for any

point in time; chapter 9 will have you covered to implement this request).

In Table 2-4 you see a table which contains the additional columns to

describe the timespan, when the row is/was valid (ValidFrom and

ValidUntil). This looks somehow similar to the Type 1 solution. In the

example I kept ValidUntil empty for rows without a invalidation.

Alternatively, you could also use a timestamp far in the future (e. g.

December 31 9999).

Table 2-4. SCD Type 2 before the change

AlternateKey Region ValidFrom ValidUntil

0 NA 2023-01-01

1 Northwest 2023-01-01

10 United

Kingdom

2023-01-01

Let’s assume, that we get the same new data, as laid out in Table 2-5: the

row for region “NA” was removed from the data source, the name of

region “Northwest” was translated to German language “Nordwest”, the

row for “United Kingdom” stayed unchanged and a new row for “Austria”

was added.

Table 2-5. SCD Type 2 changed rows

AlternateKey Region

1 Nordwest

10 United Kingdom

11 Austria

As you can see in Table 2-6, in a Type 2 solution as well, the row for

“NA” will not be removed, but marked as deleted by setting the

ValidUntilAt column to the timestamp of removal. For the row,

containing “Northwest” the ValidUntil timestamp will be updated and

a new version for the same AlternateKey , but region “Nordwest” will

be inserted into the row. “United Kingdom” will stay unchanged. And the

new row for “Austria” is added, with a ValidFrom set to the current

day.

Table 2-6. SCD Type 1 after the changes

AlternateKey Region ValidFrom ValidUntil

0 NA 2023-01-01 2023-08-15

1 Northwest 2023-01-01 2023-08-15

10 United

Kingdom

2023-01-01

1 Nordwest 2023-08-15

11 Austria 2023-08-15

WARNING

You need to keep an eye on how many changes are to be expected for the dimension on average in

a certain period of time, as this approach will let the dimension table grow in terms of rows.

This is a very common type of slowly changing dimension as well.

Type 3: Add New Attribute

Instead of creating a new row for every change, Type 3 keeps a dedicated

column per version. Obviously, you need to decide upfront of how many

versions you want to keep track of, as you need to provide one column per

version.

New versions will therefore not let the table grow, but the number of

versions you can keep per entity is limited. Querying can be a bit of an

issue, as you need to query different columns, depending on if you want to

display the most current value of an attribute or one of the previous

versions.

I have never implemented this type of slowly changing dimension for one

of my customers. But it may still be a useful approach for your use case.

Type 4: Add Mini-Dimension

This approach keeps tracks of the changes in new rows, but in a separate

table. The original table shows the most current version (as Type 1 does)

and the older versions are archived in a separate table (which can hold as

many older versions as you need). Querying the most current version is

easy. Showing older versions involves a more complex query for joining a

fact table to the correct row of the archive table. Or you would store both

the foreign key to the original table and a second foreign key to the

matching rows in the mini-dimension. New versions do not change the

number of rows in the original table but will certainly do in the extra table.

Again, I have never implemented this type of slowly changing dimension

for one of my customers. But it may still be a useful approach for your use

case.

NOTE

The rest of the types are more or less combinations of the previous versions. I am sure they have their

use cases – but I never had to implement them, as Type 1 and Type 2 were sufficient for my client’s

needs so far, that’s why I just give you a short overview here instead of a in-depth description:

Type 5: Add Mini-Dimension and Type 1 Outrigger

Type 6: Add Type 1 Attributes to Type 2 Dimension

Type 7: Dual Type 1 and Type 2 Dimensions

At https://www.kimballgroup.com/2013/02/design-tip-152-slowly-changing-dimension-types-0-4-5-6-7/

you find more about these types.

Hierarchies

Hierarchical relationships can be found in real-life in many situations:

Product categories (and their main- and subcategories)

Geographical information (like continent, regions, countries, districts,

cities, etc.)

Time and date (like year, month, day, hour, minute, second, etc.)

Organigram (every employee reports to another employee with the CEO at

the top)

I am convinced that you will have some hierarchical structures in your data

model(s) as well. From a technical perspective, the latter example

(organigram) is different from the other examples. Typically, you store year,

month, day, etc. in separate columns of a dimension table to represent the

hierarchy. This doesn’t necessarily apply to organigrams, which are a so-

called parent-child-hierarchy. There are plenty of ways of storing the parent-

child relationships in a table. One way is that an employee references another

employee (which is a different row within the same table) over a simple

foreign key relationship. This is called a self-referencing relationship because

the Employee table contains both the primary key and the foreign key used

in this relationship. The employee’s Manager ID references another

employee’s Employee ID. This is a very efficient way of storing this

information, but it’s hard to query because you need to somehow travers the

organigram from one table to the other.

You can either use a recursive Common Table Expression (CTE) written in

SQL to collect information from different levels. Or you could write a

recursive function in T-SQL. You can also solve this in DAX (chapter 7) and

Power Query (Chapter 11). Any way, Power BI asks you to to create a so-

called materialized path per row in the employees table. Figure 2-1 shows an

example, what the materialized path could look like for a bunch of nodes in a

hierarchy.

Figure 2-1. MaterializedPath

The materialized path is simply a string containing a reference to the current

node and all its parent nodes. This example uses the names of the employees,

concatenated with a pipe (|) as the delimitor. I used the full names for better

readabilty, in reality you should use the primary keys of the nodes (e. g.

EmployeeKey) instead, of course. The delimitor is necessary, otherwise a

materialized path of “123” could be interpreted as node 1 and 23 or as node

12 and 3. Make sure that the delimitor will never be used in the actual values.

A materialized path is a rather convenient way to query. This string can be

split into separated columns containing e. g. the name of the managers as one

column per level. In this flattened table the name of the CEO will then appear

in the column representing level one of all employees. Level two contains the

next management level, and so on. You can easily count the number of keys

in the materialized path (by counting the number of separators and adding

one) to know on which level the employee is within the hierarchy. See an

example for employee “Amy Alberts” in Table 2-7

Table 2-7. Materialized path and columns per level

EmployeeKey ParentEmployeeKey FullName PathKey

290 277 Amy Alberts 112|277|290

You made it through chapter 2 and now it is time to wrap it up.

Key Takeaways

This chapter guided you through typical tasks when building a data model:

You need to denormalize your fact tables and fully normalize your

dimension tables to form a star schema.

It’s a good idea to push calculations as much as possible upstream. The

earlier you create calculations in your overall data flow, the more people

and tools can use the calculation, which avoids having calculations

defined on many places.

You should avoid keeping flags and indicators as they are but transform

them into meaningful texts instead.

Time and Date play a crucial role in many data models. Both should be

created in the granularity needed in your reports (e. g. a Date dimension

with a row for every single day of the year or a Time dimension for every

single hour of a day).

A single dimension may play more than one single role within the data

model. You can either create the table several times in your data model

(once per role) or create several relationships from the dimension to the

fact table and activate the relationship as needed.

Modelling of Slowly Changing Dimensions is needed when you want to

keep track of changes in the attributes of a dimension. The most common

type is the one, where you create a new row for every new version of the

entity.

There are two different types of hierarchies. One, where you have one

column per level. And one, where a child references its parent.

Chapter 3. Use Cases

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

In chapters 1 and 2, you learned to understand the basics of a data model and

which steps you need to take to build a data model optimized for analytics.

This chapter builds upon these steps. Please make sure that your data model

is built upon these steps before you dive into the use cases described in this

chapter.

WARNING

If you did not proceed as described in chapters 1 and 2, applying the concepts of the current chapter

might be full of frustrations – because the best basis for advanced concept is a star schema. There is no

shortcut into advanced topics.

In this chapter I will describe five uses cases, which I see at many of my

customers – and therefore assume that there is a high likelihood of you facing

them as well sooner or later. The list is, of course, a personal selection –

every new project comes with its own challenges. Binning is the challenge of

not showing the actual value, but a category the value falls into, instead. I

will then use the case of Budget values to introduce a data model, containing

more than one single fact table (which still conforms with the rules of a star

schema). I am very excited (and proud of) the section Multi-language model.

It describes the problem of giving the report-user full control over the display

language of the report (read: headlines and content) and the solution I came

up with. It is similar with the section on Key-value pair tables: A data source

for a data model of one of my customers contained all information in a single,

unpivoted table, for which I describe the problems and (semi-)automatic

solutions to pivot the table, which I could not find a pre-defined solution.

Finally, the section on Combining self-service and enterprise business

intelligence will describe the basis for what can be done in Power BI and

Analysis Services in a Composite model. In the first use case, Binning, I will

describe different approaches of solving the same problem – all of them

forcing you to think a bit out-of-the-box.

Binning

The term “binning” in this context means, that you do not want to show the

actual values (like a quantity of four), but to show a category instead (like

“medium” or “between one and five”).

Basically, we have the following options to model this requirement, all of

them with different disadvantages and advantages, as described:

Adding a new column to the table containing the value and making sure to

fill it with the correct description of the bin as in Table 3-1. This is the

simplest of the options, but not recommended, as you would make the fact

table (containing the value to be binned) wider. Also, in case the range of

the bin or its descriptive text changes, you would need to update the fact

table. In some implementations this will not be possible, because due to

the size of the fact table and the run-time of the update statement.

Table 3-1. Adding a column to the fact table

Date Product Quantity Bin

2023-08-01 A 3 Middle

2023-08-01 B 1 Low

2023-08-02 B 4 Middle

2023-08-03 C 5 High

Creating a lookup table like in Table 3-2, which consists of two columns:

One contains a distinct list of all possible values. The second column

contains the value to show for the bin. This is identical to the approach

with the lookup table to transform a flag or code into a meaningful text,

described in the previous chapter.

Table 3-2. Adding a lookup table containing
distinct quanties and their bin

Quantity Bin

1 Low

2 Low

3 Middle

4 Middle

5 High

6 High

You then create an equi-join between the table containing the values to-

be-binned and this lookup table. This looks a bit unusual, as we are used to

join primary keys and foreign keys and not e. g. a quantity. But this

solution is easy to implement and has a very good performance.

Another advantage is, that such a table is usually easy to create.

Maintaining the table is easy, in principle, as well. The catch is only if

somebody needs to maintain the table by hand and typos happen in some

of rows (then a value of three would be assigned to “medum” instead of

“medium” and would be shown as a category for itself). Or, if the

categories get mixed up by accident (that a value of four is “medium”, but

a value of five is set to “small”). Usually such a problem is easy to spot

and fix manually. Alternatively, you can use a script to create and

maintain the table.

A real backdraft is though, that this idea only works, if we can generate a

distinct list of all possible values. Yes, you can add some extra lines for

outliers (quantities beyond a thousand, maybe), but if we are not talking

about pieces, but about pounds or kilograms, then an unknown amount of

decimal digits can be involved as well. Rounding (to the nearest whole

number or thousand or million) could though help to overcome this

problem.

The other option is to create a table, containing three columns: One,

defining the lower value per category, another one to define the upper

value per category, and finally the value to show, when a value falls in

between the lower and upper range. You can see an example in Table 3-3.

Table 3-3. Adding a lookup table containing ranges of quantities and their
bin

Bin Low (incl.) High (excl.)

Low 3

Middle 3 5

High 5

Such a table is even easier to create. It’s less prone to mistakes, but it

involves some extra logic, when assigning the actual values to the

category.

NOTE

I also want to point out, that I strongly recommend making one range value (e. g. the lower value)

inclusive, and the other one (e. g. the upper value) exclusive. That means that a value falls into a

category if it is greater or equal the lower bound, but lower than the upper bound. This has the

advantage that you can use the exact same number as the upper bound for one category and as the

lower bound for the next category. There will be no gaps, as a value is either lower than the upper

bound (and therefore falls into this category), or it is greater or equal than the upper bound (which

matches the lower bound of the next category) and therefore falls into the next category. Makes

sense?

Another challenge I see often in models I build for my customers is that of

combining information of different granularity in one single data model. This

is e. g. the case when you combine actual values and their budget, as

discussed in the next section.

Budget

I called this section “Budget”, but budget is only one of plenty use cases with

the exact same problem. The problem I am talking about is the problem of

“multi-fact” models. A “multi-fact” model is a data model, containing more

than one single fact table. Such models are sometimes called “galaxies” or

“universes”, as they contain more than a single “star”. This makes only sense

if those stars have at least one single common dimension. If not, I would

recommend creating two independent data models instead.

The definitive goal in a star schema is to add new information to the existing

tables only, if possible, and not to create a new table for every extra piece of

information. The reason is that joining tables is an expensive operation in

terms of report/query runtime. With that said, you should first evaluate if the

granularity of the new information matches the granularity of an existing

table.

Let’s first look at cases, where we can just add the information without

further changes.

Maybe you want to add the information about a the product’s category to the

reports (and therefore to the data model). If you already have a table which is

on the same or a lower granularity than the product category, e. g. a

dimension table Product which contains information about individual

products, you can simply add Product Category to this dimension table.

The granularity of the Product table will not change, as you can see in

Table 3-4

Table 3-4. Product table with main product category

Product Key Product Name Product Category

100 A Group 1

110 B Group 1

120 C Group 2

130 C Group 3

If the new (factual) information, you want to add, is on the same granularity,

you can simply add this as a new column. For example, in a table containing

Sales amounts in EUR you can simply add a new column containing the

Quantity in pieces. As long as both the amount in EUR and the quantity in

pieces are on the same granularity this is no problem. The granularity of a

fact table is given by the foreign keys in the table (e. g. date, product,

customer, etc), which did not change in the example shown in Table 3-5

Table 3-5. Adding quantity to a fact table

Date Product Sales Quantity

2023-08-01 A 30 3

2023-08-01 B 20 1

2023-08-02 B 120 4

2023-08-03 C 500 5

The more challenging cases are coming now: If the table to start with is on

the granularity of product category (e. g. with Product Category Key as

its primary key as shown in Table 3-6), then adding the product’s key would

change the granularity of the table. Product Category Key would not be

the primary key anymore, as it is expected that there are several products

(with individual rows) per Product Category Key . The cardinality of

relationships from (fact) tables to the dimension table would suddenly change

from one-to-many to many-to-many: per row in the fact table there will be

several rows in the dimension table. This is something you should avoid, as

described in chapter 1. Instead you would keep the existing dimension table

on its granularity and introduce a new dimension table with the different

granularity.

Table 3-6. Product table with main product category

Product Category Key Product Category

10 Group 1

20 Group 2

Something similar happens if you want to add facts on a “higher” granularity.

While we collect actual sales information on the granularity of day, product,

customer, etc., values for a budget are typically only available on a coarser

level: per month, per product group, not per customer, etc. One solution is to

find an algorithm to split the budget value down to the smaller granularity (e.

g. dividing the month’s budget over the days of the month). Another solution

is to create a fact table of its own for the budget (s. Table 3-7), hence creating

a “multi-fact” data model. Then the relationship between the Budget fact

table and the Product dimension table can only be created on Product

Group level, which has a cardinality of many-to-many (in neither table the

Product Group is the primary key). In later chapters I will introduce

solutions to overcome this problem.

Table 3-7. A budget it typically on a different granularity than the actual
values

Month Product Group Budget

2023-08 Group 2 20000

2023-08 Group 3 7000

2023-09 Group 2 25000

2023-09 Group 3 8000

No matter what the reason for a many-to-many cardinality is, it is best

practice to introduce a table in between to bridge the many-to-many

cardinality and creating two one-to-many relationships instead. For example,

you create a table consisting of the distinct product groups. The product

group’s names (or their keys) would be the primary key of this new table.

The relationship from this table to the Budget table has then a one-to-many

relationship. Likewise, the relationship from this table to the Product table

is a one-to-many relationship, as well.

Now to something completely different: In a global world your users might

expect to get the reports shown in a language of their choice. In the next

section I describe a data model which allows for such.

Multi-language Model

A requirement for reports/data models to support several languages can be

seen on different levels:

Textual content (e. g. product names)

In my opinion, the most robust solution is, to introduce translations of

dimensional values as additional columns to the dimension table, as laid

out in Table 3-8 New languages can then be introduced by adding rows to

the tables – no change to the data model or report is necessary. The

challenge is, that the tables’ primary key is then not unique anymore, as

for e. g. Dim1 ID of value 11 we have now several rows in the table

(with different content for the description, and an additional Language

ID). The primary key becomes a composite key (Dim1 ID and

Language ID), which comes with several consequences we will discuss

in the other parts of this book.

Table 3-8. A table containing every dimensional entity per language

Language ID Dim1 ID Dim1 Desc

EN 11 house

EN 12 chair

DE 11 Hause

DE 12 Stuhl

Visual elements (e. g. report headline)

As I don’t want to create and maintain several versions of the same report

(one for each and every languages) I store all the text for visual elements

in the database as well (in a table like in Table 3-9). This can be done via a

very simple table, containing three columns: the Language ID , a text

identifier (which is independent of the language) and the display text

(which is different per language and text identifier). The user’s selection

of the language will also be applied as a filter on this table. Instead of just

typing the headline, I show the DisplayText for a specific text

identifier.

Table 3-9. A table containing display texts for different parts of the report

Language ID Textcomponent DisplayText

EN SalesOverview Sales Overview

EN SalesDetails Sales Details

DE SalesOverview Verkaufsübersicht

DE SalesDetails Verkaufsdetails

Numerical content (e. g. values in different currencies)

Numbers are not strictly translated, but localizing in a broader sense also

means, that numbers have to be converted between currencies. There are a

wide variety of solutions when it comes to finding the correct exchange

rate. In a simple model you would have one exchange rate per currency (s.

Table 3-10). In more complex scenarios you would have different

exchange rates over time and an algorithm to select the correct exchange

rate.

Table 3-10. A table containing exchange rates

Currency Code Currency Spot

EUR Euro 1.0000

USD US Dollar 1.1224

JPY Japanese yen 120.6800

Data model’s metadata (e. g. the names of tables and columns)

Analytical database allow to translate the names of all artefacts of a data

model (names of tables, columns, measures, hierarchies, etc.). When a

user connects to the data model the preferred language can be specified in

the connection string. Usually, only power users, who create queries and

reports from the data model, care about this meta data. And usually they

understand terms in English (or in the language the data model is created).

Mere report consumers will not directly see any part of the data model, but

only what the report exposes to them. And a report can expose text via

translated visual elements. Therefore, in my experience, the use case for

meta data translation is only narrow.

User interface (e. g. Power BI Desktop)

You need to check the user documentation on how to change the user

interface’s language. In chapter 7 I will describe the settings for Power BI

Desktop, Power BI Service and Power BI Report Server.

Some data sources expose their information in a way which looks like a table

on first sight, but which – after a closer look – turn out to be not a classical

table with information spread out over different columns. You will learn how

to handle such tables in the next section.

Key-Value Pair Tables

You can see an example for a key-value pair table in Table 3-11. Such a table

basically consists of only a key-column and a value-column (alas the name):

Key

This is the attribute. For example, “city”.

Value

This is the attribute’s value. For example, “Seattle”.

Typically, you will find two extra columns:

ID

Common rows share the same ID. For example, for ID=1 there would be

two rows, one for key =”name” and another one for key =”city”.

Type

This column contains a data type descriptor for the value column. As

column Value must be of a string data type (as a string is the common

denominator for all data types; a value of any data type can be converted

into a string), Type tells us what kind of content to await in the Value

column.

Table 3-11. A table containing key-value pairs of rows

ID Key Value Type

1 name Bill text

1 city Seattle text

1 revenue 20000 integer

1 firstPurchase 1980-01-01 date

2 name Jeff text

2 city Seattle text

2 revenue 19000 integer

2 firstPurchase 2000-01-01 date

3 name Markus text

3 city Alkoven text

3 revenue 5 integer

3 firstPurchase 2021-01-01 date

Such a table is extremely flexible when it comes to adding new information.

New information is simply added via an additional row (containing a new

value for Key and its Value). No need to change the actual schema

(column definition of such a table). This makes it very likable for application

developers. Its flexibility is like storing information in flat files (JSON,

XML, CSV, …).

On the other hand, it is very hard to build reports on top of such a table.

Usually, you need to pivot the content of the Key column and explicitly

specify the correct data type (e. g. to allow for calculation on numeric

values).

There is though one single use case, where the table in its original state can

make for very flexible reports. If the goal is to count the IDs on aggregations

on different combination of keys to look for correlations, you can self-join

the key-value pair table on the ID column. Then you filter the two Key

columns individually (e. g. one on “name” and another on the “city”).

Showing one Value on the rows and the other on the columns of a pivot

table (or a Matrix visual in Power BI for that matter) and the count of the ID

in the value’s section. You get a quick insight into the existing combinations

(e. g. that we have people of three different names living in two different

cities and in which city how many people of each name live.). If you allow

the report user to change the values for the two Key columns she can easily

grasp the correlation of combinations of any attribute. You will see this in

action in chapter 7.

Most reports you need to build are probably of a different nature: You need

to group and filter some of the attributes and aggregate others. Therefore, you

need to pivot all the keys and assign them to dedicated columns (with a

proper data type), as shown in Table 3-12. Some reporting tools / visuals can

do that for you. Most prominently Excel’s pivot table or Power BI’s matrix

visual. They can pivot the key column for you, but they are not capable of

changing the data type of the Value column. Aggregations will not be done

at all or at least not in the proper way. Therefore, the best solution is one,

where you prepare the pivoted table in the data model.

Table 3-12. The key-value pairs table pivoted on the key column

ID name city revenue

1 Bill Seattle 20000

2 Jeff Seattle 19000

3 Markus Alkoven 5

Who typically builds the data models in your organization: the domain

experts or a dedicated (IT-)department? Both concepts have their advantages

and disadvantages. The next section is dedicated to lay out their possibilities.

Combining Self-Service and Enterprise
BI

We speak of Self Service BI when a domain expert (with no or little IT

background) solves a data related problem on her own. This includes

connecting to the data source(s), cleaning and transforming the data as

necessary and building the data model, with no or just little code. The

advantage is that involvement of IT is not necessary, which usually speeds up

the whole process: All the requirements are clear to the person who

implements the solution on her own. No infrastructure needs to be installed

(everything runs on the client machine).

Everything available in an Enterprise BI solution, on the other hand, is built

with heavy involvement of an IT department. Servers are set up. Code is

developed. Automation is key. The advantage is that such a solution is ready

to be scaled up and scaled out. All the requirements are implemented in one

single place (on one of the servers). But this takes time to build. Sometimes

collecting all the requirements and writing down the user stories for the

engineers to implement can take longer than it would take for the domain

expert to build a solution on her own.

No serious organization will trust business intelligence to be run on a client

machine (Self Service BI), only. No serious domain expert is always patient

enough to set up a project to implement a database and the reports

(Enterprise BI). Therefore, the solution is to play both cards to the benefit of

everybody.

Data needed for the daily tasks of information workers to be transformed into

reports and ad hoc analysis should be available in a centralized data

warehouse. Only here, one version of the truth can be made available. But

there will always be extra data, which has not made it into the data warehouse

(yet). That’s where Self Service BI has its place.

The question is, how to combine both worlds, so that the centralized data can

be enriched with the extra data by the domain experts themselves. Chapter 7

will describe how this can be done in Power BI in a convenient way.

Key Takeaways

In this chapter I described real-world use cases. You learned about business

problems and different concept of how to solve them. In later chapters you

will learn how implement the solutions in DAX, Power Query and SQL:

Binning of values can be done either with a simple lookup table (which

contains all possible values and their bin) and a physical relationship

between the values and the lookup table. Or you can describe the ranges

per bin and apply a non-equi join between the values and the lookup table.

New tables should only be added to a data model if the information cannot

be added to an existing table. As a budget is usually on a different

granularity than the actual data is, I took this as use case for a “multi-fact”

data model.

There are many aspects you must cover, when you want to implement

localized reports: content of textual columns, text on the report, currency

exchange rates, the names in the data model and the language of the user

interface of the application you are working with.

Both, Self Service BI and Enterprise BI will always exist side-by-side. In

this chapter you learned about the challenges of how to combine both

worlds. In chapter 7 you will see how both worlds can live together in

Power BI.

Chapter 4. Performance Tuning

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

You are very blessed if performance tuning was never a topic in a report you

built. Usually, it is not a question if, but only when the performance of a

business solution becomes a priority. Generally, if you took everything we

discussed in this book so far seriously, and transformed all data into a star

schema data model, then you made an important step forward towards good

performing reports. The shape of the data model plays an important role

when it comes to performant reports. But, of course, there are many more

pieces, which play a role in how fast reports will react to show the first data

or react to filters. As this book is about data modelling, I will limit myself to

only discuss performance tuning topics around data modelling. My first

computer had a Turbo button on the front part of its case, just next to the

power button. I only used it rarely in the first weeks, but sooner or later I

asked myself why I should run everything at a lower speed? The same applies

to the data model you build. You should always build it with thoughts about

good performance in the back of your mind, because, why should you build a

model, where everything runs at a lower speed? Unfortunately, there is no

Turbo button in Power BI you can just hit after you powered on the

application. But there are some concepts you can apply. Read on to learn

about them. If you are about my age, you maybe, in your youth, had a piece

of paper with the telephone numbers of your close family, friends, and

neighbors listed. Mine had the most important people first, and later I added

more and more people to it. When the list got a decent length scanning

through it every single time when I needed a number bored me. So, I started a

new list and split the names and numbers on different papers: One paper per

letter in the alphabet, with the numbers of all people with the same first letter

of their first name together and the papers in alphabetical order as well.

This principle applies to databases as well: You can either create simple

tables, where new data is (chronologically) added at the end of the table (or in

between rows, after a row was deleted). It is very fast to add data to the table,

because there is no need to find the right place, but just use the next empty

space. But you pay a penalty when you read from the table, as the full content

of the table has to be scanned every time you query it. Filters will only reduce

the result set, but not the necessity of reading and evaluating every single row

(to find out if it satisfies the filter condition or not). The alternative is to store

all the rows in a table in a certain order. As long as your filter is about the

order key, finding the right rows can be faster: you ignore all the rows which

do not fulfill the search condition, return all matching rows and stop as soon

as non-matching rows appear in the table. In reality this can be even faster, as

databases store extra information (“meta data”) about the data just for the

sake of making queries faster. But writing data into such a table will be a bit

slower: The right position for the new rows has to be found. Maybe new

space must made available at this position. And the meta data has to be

maintained. The examples I’ve just mentioned should make clear the very

important principle: You can exchange query speed with space on disk or in

memory. Speeding up queries this way will likely slow down the write

operations. In analytics it is most often the case that reading the data is done

often and should go fast, while refreshes (= write operations) can be done on

only scheduled points in time, and are fewer in numbers. Optimizing for

read-operations is therefore a good idea, even when it slows down the write-

operations. You can choose one of the following options as a way to store

data in tables:

Only storing queries

You could opt for not physically storing (duplicating) data but keep the

data in the original tables. Instead, you store only the query which will

return the data in the desired shape. The advantage is, that no extra space

is needed to store the (shaped) data and no steps to update the data has to

be scheduled. The query result will always be fresh. Depending on the

type of transformations and the way the source tables are stored, the query

will need some time to run.

Storing query results

Instead of running the queries against the data source every single time

you need the data, you could store the result in a table and schedule a

refresh. This will occupy space on disk or in memory, but speed up the

queries, as the result of the transformations is already persisted. The

challenge is to schedule the refresh often enough, so that the reports do not

show stale data.

Adding meta data about the data

Here we can distinguish between meta data automatically added by the

database system (like descriptive statistics about the data) and meta data

explicitly added (like indexes). A database index is the same as the index

at the end of this book. Instead of scanning (= reading) the whole book

and looking for the term “foreign key”, you can jump to the index pages,

where the important terms are ordered alphabetically. You will quickly

find out, if the book talks about this term and find references to the book’s

pages where you find more information about the term “foreign key”.

While the book itself is “ordered” by its chapters, the index is ordered by

an additional key. For tables it is not uncommon to have more than one

index.

Adding data of different granularity to the data model

Querying a table by its sort order or over an additional index will be faster

compared to not having such. But still, a query needs to collect the

necessary information and calculate the aggregated values for the report

(which typically does not show single transactions but data grouped by

dimensions). Of course, it would be faster if those aggregated values are

already stored (= persistsed) in a table. This is what aggregation tables are

about: They store the identical information as the base table, but on

different levels of granularity. For the report the table with the right level

of aggregation will be used.

No matter which solution you want to implement, all of them are a strategy to

exchange disk space (and therefore increasing the durtion of time to process

the transformation and refresh the user-facing data model) with query

runtime.

Key Takeaways

A good data model takes query performance into account. By following the

principles of the earlier chapters, you already created a good performing data

model. No matter which data model you design or which tools you are using,

you have a wide variety of possibilities to control the performance, by

applying a taste of two options:

Directly querying the data source will always return the freshest

information. But query time might not be acceptable (due to complex

transformation or a data source not designed for these ad-hoc queries).

We can speed up queries by pre-computing all or parts of the data needed.

Trans‐ formations can be persisted; statistics and indexes will help to find

information faster and we can pre-aggregate data on different levels of

granularity. This takes up extra space in the database and needs to be

maintained regularly, so it does not contain stale data.

By cleverly trading off query time and space used for the persisted data,

you can achieve a balanced system, which satisfies the needs for fast

reports and available storage resources.

With the next chapter we leave the world of concepts and dive into Power BI

Desktop and its possibilities to create the data model, which will make the

live of your report-creators easier.

Chapter 5. Understanding a Power BI
Data Model

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

In this chapter you will learn how to create a useful data model in Power BI

(and Analysis Services Tabular). This chapter will concentrate on the features

of the Model view. The following parts of this book discuss options of

bringing data of any shape into the desired shape in Power BI (which has

been described in general in chapter 1). You will learn that Power BI needs a

data model to work. I will go into details about the properties tables can have

and how you can put them into relationships with each other. As you will find

out, there is no need of explicitly marking primary and foreign keys, but you

still need to be able to identify them to make the relationships work. The

cardinality of the relationships play an important role in Power BI. Lucky

enough, you do not need to think about the joins and join path problems too

much. You only need to create filter relationships for your data model. Power

BI will automatically use these realtionships to join the tables appropriatly.

Power BI will also make sure to execute the queries in a way, that the join

path problems (described in Chapter 1) do not occure.

In this chapter I will, again, make clear why a single table is not a data model

fit for Power BI and that a dimensional model is the go-to solution.

Remember: The ultimate goal is to create a data model, which makes the

report creator’s life easy.

Data Model

To get a visual overview and most of the options needed to create and modify

the data model, you need to select the Model view in Power BI (or the

Diagram View in Visual Studio in case of Analysis Services Tabular). This

view looks much like an Entity-Relationship-Diagram (ERD), but has subtle

differences, we will discuss during this chapter. The tab named All tables

shows each and every table in the data model, as shown in Figure 5-1. For

bigger data models (read: data models with a lot of tables) it makes sense to

create separate layouts for only selected tables of your data model. This will

give you a more manageable view for different parts of your data model. For

example, if your data model contains several fact tables, it might be a good

idea to create a separated view per fact table (and all the connected dimension

tables), as an alternative to the All tables view. While in the All tables view

not all tables might fit on your screen (or only, if you zoom-out so much, that

you can’t read the names of the tables and columns anymore), a separated

layout with less content can be helpful.

You can create such a separate layout by clicking on the +-symbol, just right

of All tables. Then, you can add individual tables from the fields pane (on the

very right of the screen) via drag-and-drop. Alternatively, you can right click

a table’s name (either in the model’s canvas or in the fields pane) to add not

only the table itself, but all the tables with a relationship to it, as well (Add

related tables).

Figure 5-1. Model View

The Model view has three properties:

You can decide to Show the database in the header when applicable. This

is applicable in data models in DirectQuery mode and Dual. You will

learn about the different storage modes in chapter 8. This setting is turned

off by default.

Each table can be either expanded to show every column of the table or be

collapsed. When a table is collapsed, no columns are shown, unless you

ask to Show related fields when card is collapsed. Related fields are

columns, which are used in relationships. This property is enabled by

default.

As you might guess, if you Pin related fields to top of card, columns being

part of a relationship are shown on top of the field list. By default, this

setting is disabled, and all fields are shown in alphabetical order (measures

are listed after the columns, again in alphabetical order).

Tables play an important part of the data model. Let’s look on their properties

in the next section.

Basic Concepts

Tables

Every rectangle in the Model view represents one table in the data model. In

the header you can read the table’s name. Below, the columns (= fields) are

listed, in alphabetical order.

A table offers a list of functionalities, which you can access by either right-

clicking the table name or by left-clicking the ellipses (…), as I did in

Figure 5-2.

Figure 5-2. Model View Context Menu

You have many options, when it comes to :

Add related tables will add all tables which have a filter relatinship with

the chosen table to the model view. This option is only available, when the

table has relatinships to other columns and only in a layout view (not in

All tables).

You can create a New measure or a New column within the selected table.

In Chapter 6 you will learn more about these two options.

You can choose Refresh data to refresh the content of the whole table. The

data source has to be available at this point in time.

Edit query will open the Power Query window. In [Link to Come] I will

introduce to the capabilities of Power Query.

In “Relationships” you will learn everything about the options to Manage

relatinships.

[Link to Come] covers all the details of Incremental refresh and Manage

aggregations.

With Select columns you can select all columns in this table. You can then

change the properties for all of them in one go.

On the other hand, Select measures marks all measures in this table. You

can then change the properties for all of them in one go.

If you choose Delete from model, the whole table will be removed not

only from the layout view, but from the whole file (incl. Power Query).

WARNING

Be careful, this step cannot be undone. Make sure to save intermediate versions of your changes to

have a backup.

With Hide in report view the table (and all its columns) are hidden. The

goal is to not overwhelm the report creators with tables (or columns)

holding intermediate results, not intended to be shown in a report.

WARNING

A hidden table (or column) can still be seen by the user if the user enables View hidden. Therefore,

this is not a security feature: Don’t use it to hide tables with sensitive content. Use it to hide tables,

which are only helping to build the data model, but which do not contain any content, which should

be used in a report (e. g. to show the value, to filter on it, etc.).

The option Remove from diagram is only available in layouts, but not in

tab All tables. This does not remove the table from the whole file, but just

from the current layout.

With Unhide all you can disable the property Hidden for all elements

within this table. Again, this step cannot be undone. In case of a mistake,

you need to hide the individual columns again.

Collapse all collapses the height of the table to only show column which

are used in relationships (or no column at all, depending on the overall

settings).

Expand all expands the height of the table to its original size.

In Power BI and Analysis Services Tabular a table can contain not only

columns, but measure and hierarchies as well. Measures are written in the

DAX language. Chapters 9 to 12 will show you many capabilities of the

DAX language and in chapter 10 you will find more information about

measures in the section about calculations. Hierarchies group several

columns into one entity. There is a whole section dedicated to hierarchies in

chapter 6.

Tables have properties in Power BI, as you can see in Figure 5-3:

Figure 5-3. Model View Table Properties

Name

This is the name of the table. You can change the name either here or by

renaming the Power Query associated with this table in the Power Query

windows (which I discuss in chapter 13).

Description

The description is shown in a tooltip when you (or the report creatore)

move the mouse cursor over the table’s name in the Data list. Typically I

use this field to include a few sentences to describe the content of the

table.

Synonyms

This field is automatically propagated by Power BI as a comma separated

list. You can add your own synonyms as well. The list of synonyms helps

the Q&A (question and answer) visual to answer your questions. You

should type in alternate terms used in your organization (e. g. some people

may use revenue as an alternate name for table sales; you would then enter

revenue as a synonym for sales). Visuals are out of scope for this book.

You will find an in-depth description of the Q&A visual in my book “Self-

Service AI with Power BI Desktop”, though.

Row label

You should select the column containing the name of the entity as the Row

label of the table. This feature helps the Q&A visual when you reference a

table to select the column to show. It helps in Excel in a similar way, too.

Key column

You should select the column containing the primary key as the Key

column of a table. Again, this feature helps the Q&A visual.

Is hidden

Enabled means that the table is hidden by default, disabled means that the

table is shown by default. You should hide all tables which do not contain

content relevant for the reports, but which are needed to create the data

model in the right shape, e. g. bridge tables.

WARNING

The user can still View hidden elements. Therefore, keep in mind that this is not a security feature.

NOTE

Technically, tables cannot be hidden in Power BI or Analysis Services Tabular, but columns only.

If a table contains hidden columns only, then the table is hidden as well. So, hiding a table, changes

the Is hidden property of all columns within the table. If you choose to unhide a table, all columns

will be visible (no matter if they have been hidden or not before you changed this setting on the

table level).

Is featured table

Makes the table easier to find in Excel, when using the Organization Data

Types Gallery (https://learn.microsoft.com/en-us/power-bi/collaborate-

share/service-create-excel-featured-tables).

Storage Mode (Advanced)

The storage mode of a table can be either Import, DirectQuery or Dual.

You will learn more about using the storage mode to your advantage in

chapter 8.

Columns reside in tables and have properties as well, as you can see in

Figure 5-4. In the Model view you set the following properties:

Figure 5-4. Model View Column Properties

Name

This is the name of the column. You can change the name either here or in

the Power Query window. You will learn about Power Query in [Link to

Come]>>.

Description

The description is shown as a tooltip, when you hover over the column in

the fields list in the Data blade. Typically I add a few sentences to

describe the content of the column or the formula of a DAX measure.

Synonyms

The provided synonyms are used by the Q&A visual to find the columns

not directly referenced by their (technical) name, but by alternative names

and versions as well (e. g. a user might ask Q&A about revenue, but the

column is called Sales Amount ; you would then add revenue in the

list of synonyms for the column Sales Amount).

Display folder

In tables with a lot of elements, browsing through the list can be tedious.

Putting a column (or a measure) into a folder provides some structure. To

put the column Sales Amount into a folder called Sales you would

just enter “Sales” into the Display folder. You can even create subfolder

by using the backslash (“\”) in this field. Etc. “KPI\Sales” puts the column

into a folder KPI and there into a subfolder Sales .

Is hidden

Hides the column. You should hide all columns which we need for the

data model only (e. g. all keys), but should/will never be shown in a

report.

WARNING

The user can still View hidden elements. Therefore, keep in mind that this is not a security feature.

Data type (Formatting)

Every column has a dedicated data type. I discuss the available data types

later in this section.

Format (Formatting)

You can choose a format, in which the value of the column is shown. The

available formatting options are dependent on the data type, of course:

Percentage format, Thousands separator, Decimal places, Currency

format, etc.

NOTE

Changes to the format do not change the data type (= internal storage) of the column. For example,

if you want to get rid of the time portion of a timestamp, you could change the format to only

showing the date portion. But then the time portion is still stored in the data model (which is

expensive in terms of storage space, as you learned in chapter 2 and might lead to non-working

filters, if the dimension table does not contain the time portion, but the fact table does, for

example). If nobody will ever report on the time portion, then it is a good idea to change the data

type to Date instead.

Sort by column (Advanced)

By default every column is sorted by the value it contains. In some

situations, this can be unpractical. Typically, you do not want a list of

month names sorted alphabetically, but by their month number. This is

what this property is for. You would select column Month Number as

the Sort by column of Month Name . You can also use this option to

show names of categories or countries in a specific order. For every value

of the column, only a single value of the Sort by column must be available;

you cannot sort the Month Name by the Date or by a month key,

which contains both, the year and the month number. In other terms, the

relationship between the column and the Sort by column must be of a one-

to-one or a many-to-one cardinality but can’t be a one-to-many or many-

to-many.

Data category (Advanced)

Assigning a Data category to a column allows Power BI to default to a

certain visual, when this column is used. E. g. if you mark a column as a

Place, Power BI will suggest showing the content on a Map visual.

Summarize by (Advanced)

This setting is intended to help newcomers to Power BI’s data modelling

capabilities, to allow to add a numerical column into a visual, where the

content should be aggregated. For example, if you add the

SalesAmount column to a visual, you usually do not want to get a

(long) list of all the rows of the Sales table showing the individual

SalesAmount value, but you want to sum up the numbers to a total.

Summarize by allows you to specify, how the values are aggregated: Sum,

Average, Min, Max, Count, and Distinct Count. For numeric values, which

you do not want to aggregate (e. g. the year or the month number), you

must specify None.

Any setting different from None will create a so-called implicit measure in

the data model, containing the chosen aggregate function. Unfortunately,

implicit measures do not work when you use Excel to connect to this data

model. Implicit measures will also stop working as soon as you create

Calculation groups (you will learn about them in chapter 10 in the section

about calculations in DAX).

The solution is to explicitly create measures for columns, where you need

aggregations to be applied, and set Is hidden to Yes for those columns.

(You will learn more about explicit measures in chapter 10 as well).

Is nullable (Advanced)

Specifies, if the column may contain blank (or null, as it is called in

relational databases). If you consider blank in this column as a data quality

issue, then you should turn this setting to No. This will lead to an error

during the refresh in case a row actually contains blank for this column.

Every row of a column must conform to the column’s datatype in Power

BI. Let’s take a closer look onto the different data types, Power BI allows

to choose from:

Binary

This data type is not supported and exists for legacy reasons only. You

should remove columns of this datatype before loading into Power BI and

Analysis Services or just delete them from the model in the Model view.

True/false

A column of this type can contain Boolean values: True, or false. But this

data type is no exception in the sense that it additionally can also contain

blank. Blank represents an unknown value. In a note below I will provide

you more information about blank.

Fixed decimal number

This datatype can contain numbers with up to four decimals and up to 19

digits of significance. You can store values between

-922,337,203,685,477.5807 and +922,337,203,685,477.5807. These 19

digits are identical to the Whole number, as a Fixed decimal number is

stored in the same internal format, but with the extra information, that the

last four digits are decimals. For example, the Whole number 12345 and

the Fixed decimal number 1.2345 are stored in the exact same internal

representation, with the only difference, that the Fixed decimal number is

automatically divided by 1000 before it is shown. Due to the limit to four

decimal places, you can face rounding error, when values are aggregated.

Decimal number

Is 64bit floating point number which can handle very small and very big

numbers, both in the positive and negative spectrum. As it is only precise

to up to 15 digits, you may face rounding error, when values are

aggregated.

Date/time

Represents a point in time, precise to 3.33 ms. Internally in a database all

date and time related data is stored as a decimal number counting the days

since an arbitrary point in time. The decimal portion represents the parts of

the day (e. g. 0,5 represents 12 PM). I am pointing this out to make sure

that you do not make the mistake of thinking that a date/time is stored in a

certain format (e. g. “August 01 2023 01:15:00 PM” or “2023-08-01

13:15:00”). As already pointed out, the Format properties task is to put a

value into a user-friendly format we, as humans, can read, but does not

change the internal representation (which is 45,139.55 in Power BI for the

given example – and would obviously be not very user-friendly to show in

a report).

Date

Represents a point in time, without the time portion. Everything

mentioned for data type Date/time also applies here. Internally this data

type is represented as a whole number (e. g. 45,139 to represent August 1,

2023).

Time

Represents a point in time, without the date portion. Everything mentioned

for data type Date/time also applies here. Internally this data type is

represented as a decimal number with only the decimal portion (e. g. 0.55

to represent 1:15 PM).

Text

Holds unicode character strings, which can hold up to 268,435,456

characters.

Whole number

Values of this data type are stored as an 64bit integer value. This data type

does not have decimal places and allows for 19 digits. It covers the

spectrum between 9,223,372,036,854,775,807 and +

9,223,372,036,854,775,806.

NOTE

For databases it is typical that every data type supports also an “unknown” value. In relational

databases and in Power Query this is represented by null, in DAX by blank. It is important to

understand that this unknown value is different from an empty string, the numeric value zero (0) or a

date value of January 1 1900. The information that something is unknown might be an important fact

(and should not be set equal to some default value). In a user-friendly data model, an unknown value

should be replaced by something which explicitly tells that the value is unknown (e. g. string “N/A” or

“Not available”), as you already learned in chapter 2.

Tables don’t live just by themselves, but usually contain information which is

somehow in relation to information in other tables. Read on to learn more

about this kind of relationships.

Relationships

Relationships in Power BI connect tables with each other and look like

foreign key constraints in a relational database, but work differently. While

foreign key constraints limit possibilities (they prohibit having a value in a

foreign key column, which cannot be found in the related primary key

column), relationships in Power BI exists solely to propagate a filter from one

table to another. If you filter the Date table on a certain year, the filter

relationship will propagate this filter to the Sales table, so queries only show

sales for the specified year. Their effect enables what we usually perceive as

something very natural. But for this natural thing to happen, we must help

Power BI by setting the relationships right.

Creating filter relationships is rather easy. Power BI offers three methods,

which all lead to the same result:

Automatic creation

Power BI can automatically create and maintain filter relationships for

you, when loading new tables. Under File – Options and Settings –

Options – Current File – Data Load you can find three options related to

Relationships (s. Figure 5-5). You can Power BI let import the

relationships from a data source on first load (when the data source is a

relational database and the foreign key constraints are available). You can

let Power BI maintain those relationships when refreshing data. And

Power BI can also autodetect new relationships after data is loaded (by

applying a set of rules: the column names must be the same, the data types

of these columns must be the same, and in at least one of the two tables

the column’s value must be unique).

WARNING

If your source system follows the rule to name all primary keys e. g. “ID”, then the automatic

detection of relationship will end in a relationship chaos, as Power BI will most probably start

creating relationships between all those columns. Either turn this feature off or change the naming

convention to add the table’s name to the key fields (“ProductID” instead of just “ID”, or similar).

Figure 5-5. Options – Curent File – Data Load

Drag and drop

A very simple way of creating a relationship is to drag one column over

another (from a different table) in the Model view. In theory, it does not

matter which of the two columns you drag over the other one. The

cardinality and filter direction (s. below) are automatically set for you. It is

though always a good idea to double-check if all properties of the created

relationship are as they should be. I’ve seen it more than once, that Power

BI created a many-to-many (due to unintended duplicates in a table) or a

one-to-one relationship (due to uncomplete test data with only e. g. one

order per customer), where it should have been a one-to-many cardinality

instead.

Dialog box

Via the ribbon you can choose Home – Manage relationship to open a

dialog box from which you can create a New relationship, start Autodetect

(as described in the paragraph before), Edit or Delete an existing

relationship (s. Figure 5-6). By clicking on the checkbox Active you can

(de-)activate a relationship. I explain this feature below ([Link to Come]).

TIP

The order the relationships are shown looks unpredictable to me: A relationship between the Date

and the Sales tables might show up with the Date table first (and ordered by it) or with the Sales

tables first (and ordered by that). If you cannot find the relationship you are looking for, double-

check if can find it listed with the other table first in this dialog box.

Figure 5-6. Modeling – Manage Relationships

TIP

As filter relationships are so important, I would not rely (only) on automatic creation. Even if you let

Power BI create the relationships for you in first place, I would make sure to review every single one,

to assure that no relationship is defined in a wrong way (read: check the cardinality), that no

relationship is missing and that no unnecessary relationship was created.

Figure 5-7 shows you the property pane in the model view and the Edit

relationship dialog for the same relationship.

Figure 5-7. Model View Relationship Properties

A filter relationship in Power BI consists of the following properties:

First table

Sometimes also described as the left table. It is one of the two tables, for

which you create a relationship. Which table the first/left table is, is not

important, as any one-to-many relationship can also be seen as a many-to-

one relationship – they are identical.

Column in the first table

You can click on the column name shown for the first table to select one

or choose from the listbox. The Edit relationship dialog windows shows a

preview of the values of the first three rows. Selecting more than one

column is not possible, as Power BI does not allow to use composite keys.

In cases where you must work with composite keys, you need to simply

concatenate the columns with a separator character in-between (as a DAX

calculated column, in Power Query, SQL or the data source) before you

can create the relationship.

Second table

Sometimes also described as the right table. It is one of the two tables, for

which you create a relationship.

Column in the second table

You can click on the column name shown for the second table to select

one. The Edit relationship dialog window shows a preview of the values

of the first three rows. Selecting more than one column is not possible.

Cardinality

Cardinality describes, how many rows in the other table can maximally be

found for a single row of one table. Chapter 1 keeps you fully covered on

this topic.

Cross filter direction

As explained, the sole purpose of a relationship in Power BI is to

propagate a filter from one table to another. A filter can go in either

direction, or even in both directions. I strongly advise sticking to the best

practice of only using single-directed filters. These filters are propagated

from the one-side of relationship to the many-side of a relationship. Other

filter directions (especially the bi-directional filter) might lead to

ambiguous data models, which Power BI will prohibit you to create,

and/or poor report performance.

WARNING

Bi-directional filters are sometimes used to create cascading filters (where a selection of a year

limits the list of products in another filter to only those where there have been sales in the selected

year). I strongly advise you to solve this problem through a filter in the slicer visual instead: just

add e. g. the Sales Amount measure as a filter to the slicer visual and set the filter to Is not blank.

Now any filter’s result will cascade into this slicer. Repeat this for every slicer visual.

Make this relationship active

Only one single active relationship can exist between the same set of two

tables in Power BI. The first created relationship between two tables is

active by default. If you create additional relationships between these two

tables, they can only be marked as inactive. In the model view you can

distinguish active and inactive relationships by how the line is drawn:

Active relationships are represented by a continuous line, while inactive

relationships are drawn as a dashed line. In chapter 9 you will learn how

you can make use of inactive relationships with the help of DAX. In

chapter 6 in the section about Role-playing dimensions I will show you

alternatives to having more than one relationship between two tables.

Apply security filter in both directions

This setting is only relevant, if you have implemented Row Level Security

(RLS) in the data model and use bidirectional filters (which is not

recommended; s. above “Cross filter direction”) . Propagation of Row

Level Security is always single-directed (from the table on the one-side to

the table on the many-side), unless you activate this setting. Learn more

about RLS in Microsoft’s online documentation

(https://learn.microsoft.com/en-us/power-bi/enterprise/service-admin-rls).

Assume referential integrity

This property is only available when using DirectQuery (you learn about

DirectQuery in chapter 8). Activating this checkbox will let Power BI

assume that the columns used for this relationship have a foreign key

constraint in the relational database. Therefore, Power BI can use inner

joins (instead of outer joins) when querying the two tables in one single

query. Inner joins have a performance benefit over outer joins. But with

inner joins, rows could be unintentionally filtered out, when referential

integrity is violated by some rows, as you learned in chapter 1.

Independent of these relationship settings, joins in Power BI are always outer

joins (except for DirectQuery, when Assume referential integrity is enabled).

This guarantees under all circumstances, that no rows are unintentionally lost

(even when referential integrity in the data is not guaranteed). Missing values

are represented as Blank.

The Power BI data model does not allow for non-equi joins. In chapter 11 the

section on Binning will teach you ways of implementing non-equi joins with

the help of DAX.

Relationship consists of both a primary key and a foreign key. Let’s start how

Power BI handles primary key in the next section.

Primary Keys

In Power BI you do not explicitly mark primary keys (except when using

DirectQuery to benefit from a better report performance). Implicitly, any

column used in relationships on the one-side is a primary key. If the column

on the one-side contains duplicated values, then the refresh will fail. Empty

or blank values for a column on the one-side are allowed. I strongly

encourage you to make sure in the ETL to have no blank values anywhere,

neither in primary keys nor other columns, but to replace them with a

meaningful value or description (like “not available”). In [Link to Come] you

learn different ideas of how to achieve this.

Power BI’s data model does not allow composite keys. In case you decided

for a composite key you need to concatenate all the columns participating in

the key into one single column (usually of type Text). Make sure that you add

a separator character between the values. Look for a (special) character which

will never be part of any of the column’s values (e. g. a pipe symbol | when

concatenating names). This makes sure that the result of concatenating

“ABC” and “XYZ” is different from concatenating “ABCX” and “YZ”. With

the separator you get “ABC|XYZ” in one case and “ABCX|YZ” in the other.

Without the separator you would end up with the identical primary key

“ABCXYZ” for both rows, which is problematic as Power BI can then not

distinguish those different two rows from each other.

Surrogate Keys

As a relationship can only be created on a single column, Power BI does not

allow composite keys. I strongly advise to use columns of type Whole

number for the relationships, as they can be stored more efficiently

(compared to the other data types) and will therefore make filter propagation

happen faster (which leads to faster response time in the reports). While the

key of the source system could be of any type, a surrogate key is usually a

Whole number. This makes them perfect keys for Power BI. Learn more

about creating surrogate keys in [Link to Come].

An important reason to have primary keys is, to reference a single row in this

table. The column in the referencing table is called a foreign key. Learn more

about it in the next section.

Foreign Keys

You do not explicitly define foreign keys in Power BI. They are implicitly

defined when you create relationships. A column on the many-side of a

relationship is the foreign key.

In case you decided for a composite key as a primary key you need to

concatenate all the columns participating in the foreign key as well. Make

sure that you concatenate the columns in the very same order as you did for

the primary key and to use the same separator character.

When it comes to primary and foreign keys, you should be prepared to know

how many rows in the table containing the primary key are a available for a

single foreign key, and the other way around. This is called Cardinality and

covered in the next section.

Cardinality

For every relationship you also need to specify its cardinality. Power BI

offers three types of cardinalities:

One-to-many (1:m, 1-*)

One-to-one (1:1, 1-1)

Many-to-many (m:m, -)

All relationships in Power BI are automatically conditional on both sides.

That means that it is allowed, that a corresponding row in the other table is

not available. For Power BI it is OK, when there is no row in the Sales

table for a specific Customer . This is also OK in the real-world, as a brand-

new customer might not have ordered yet. But it is also OK for Power BI if

no customer can be found for a CustomerID in the Sales table. In the

real-world this would be an issue in most cases: Either no CustomerID was

stored for a sale. Then you need to clarify with the business if this is indeed

possible (for edge cases). Or the CustomerID provided in the Sales table

is invalid. That would be a data quality issue you would need to dig deeper

into. Because if the CustomerID is invalid for a row, who knows if the

CustomerID ’s for the other rows are just valid by random, but contain the

wrong information?

WARNING

Keep in mind, that Power BI will create a many-to-many relationship not only for the classical many-

to-many relationships (e. g. one employee works for many different projects, one project has many

employees), but in all cases, where none of the two columns used for creating the relationship only

contains unique values. In case of data quality issues (like if there is duplicated customer row or you

have more than one row with a blank CustomerID), Power BI will not let you to change the

relationship to a one-to-many.

Relationships of many-to-many cardinality are called “weak” relationships,

as they come with two special effects, which are reasons why you should

avoid this type realtionships (and using a bridge table instead, as discussed in

“Types of Tables”):

In case of missing values in the dimension table or wrong foreign keys in

the fact table, no blank rows are shown in the reports to represent the

values for the missing/wrong keys. Instead, these values are not shown at

all. Reports and the totals might show incomplete numbers. This effect

only hits you in case of data quality issues. Making sure that there are no

missing rows in the dimension table and that there are no invalid foreign

keys in the fact tables is a good idea anyways.

Calculations in DAX which use function ALL (or REMOVEFILTERS) to

remove filters will not remove filters on tables connected over a weak

relationship. This can be a trap when you ask to Show value as - Percent

of grand total or when creating more complex measures in DAX. As

report creators can create measures (containing function ALL in their

expression), this problem can appear anytime and can only be avoided by

avoiding many-to-many relationships. That’s why I try to avoid many-to-

many relationships. Find explanations about the specialties of many-to-

many relations ships at https://learn.microsoft.com/en-us/power-

bi/transform-model/desktop-many-to-many-relationships#use-a-

relationship-with-a-many-to-many-cardinality-instead-of-the-workaround.

In case of very large tables, many-to-many relations might have a better

performance compared to the solution with a bridge table, though.

In the Model view you can easily spot such problematic relationships: The

line drawn for a many-to-many filter relationships shows gaps on both sides

(as you can see in Figure 5-8). The solution to avoid all these effects is to

model a many-to-many relationship via a “bridge” table. You will learn this

technique later in “Types of Tables”.

Figure 5-8. Many-to-many relationships are “weak” relationshps, drawn with gaps at both ends.

TIP

Always make sure that you understand how the relationship between two entities are in the real world.

In cases you can’t set the configuration for a relationship in Power BI accordingly, double-check the

reason for that. Don’t just carry on but clarify the business’ requirement and the data quality.

Combining Tables

Set Operators

Set operators are not available directly in the data model of Power BI, but

when querying data only. Jump to the other parts of this book to learn about

if and how to implement set operators in DAX (chapter 9), Power Query / M

(chapter 13), and SQL (chapter 17). On the other hand, joins are a regular

thing when working with data models in Power BI. Read on, to learn more

about that.

Joins

Joins are implemented implicitly over the data model’s relationships. The

filter relationships stored in the data model, are implemented automatically

by the Power BI’s storage engine to perform necessary joins. That means, if

you create reports or write queries in DAX, there is no need to (explicitly)

specify a join operator, as this is implicitly done by the storage engine for you

(and the report user). The filter relationship defines the join predicate (=

which two columns are involved). The predicate is always done as an equi-

join (= the values of the two columns must match). You cannot define non-

equi joins in Power BI’s data model. In chapter 9 you will learn how to

implement queries for non-equi joins with DAX. You can also perform non-

equi joins in Power Query / M and SQL, to join queries and load the result as

one single table into Power BI.

The natural join is simulated by Power BI’s ability to create the relationships

in the data model automatically for you. If the filter relationship is not

explicitly defined in the data model, then no natural join will happen, when

creating reports.

Unfortunately, you cannot create self-joins at all. In the section about

hierarchies (in chapters 10, 14, and 18), you will learn how to flatten parent-

child hierarchies, so you are able to report on such hierarchies.

By default, all joins in Power BI are implemented as outer joins. This

guarantees that no rows are lost, even when referential integrity of the model

is not guaranteed. In relational databases outer joins come with a performance

penalty (compared to inner joins). The storage engine behind Power BI was

always built with outer joins in mind – so there is no performance penalty to

be expected. And there is also no way of comparing, as you can’t execute

inner joins on data imported into Power BI. When you don’t import data, but

use DirectQuery (on relational data sources), then it is recommended that you

first, guarantee that referential integrity is in place in the data source and

second, you can tell Power BI so (with the table’s property in the model

view). Then the storage engine will use inner joins instead of outer joins

when querying the data source (and making use of the performance

advantage).

Joins are necessary to bring information, spread over several tables, back into

the result of a single query. Combining the tables in a query can be tricky –

but Power BI covers the usual problems for you, as you will see in the next

section.

Join Path Problems

No worries, Power BI got you covered on all join path problems: None of the

three problems discussed in Chapter 1 (loop, chasm trap, and fan trap) are an

issue in Power BI. But you can see this for yourself in the following list:

You cannot create a loop, neither directly nor indirectly (via intermediate

tables), as Power BI will not allow you to create multiple active paths.

Power BI will force you to declare such a relationship as inactive.

Power BI has implemented a logic to avoid the negative effects of a

Chasm trap. The example in Figure 5-9 shows a report with three table

visuals. The table on top left shows the reseller sales per day. Just below

you see the internet sales per day. On the right, the results of both tables

are combined, per day. The two tables have each a one-to-many

relationship to the Date table (and therefore a many-to-many

relationship between themselves). As you can see, none of the sales

amount for a day (or for the total) is wrongly duplicated, but matches the

numbers shown for the individual results.

Figure 5-9. Chasm Trap is not a problem in Power BI

Similarly, Power BI is fail-safe against the Fan trap problem. In Figure 5-

10 you see the Freight per day (stored in the SalesOrderHeader

table) and the OrderQty per day (stored in the SalesOrderDetail

table, which has a many-to-one relationship to the SalesOrderHeader

table). In the table visual on the right you see, that the Freight is not

wrongly duplicated per day, but shows the same values as in the

SalesOrderHeader visual.

Figure 5-10. Fan Trap is not a problem in Power BI

A good way to document the relationship, and therefore the possible join

paths, is to show the data model as an Entity-Relationship Diagram, as you

will learn in the next section.

Entity-Relationship Diagrams (ERD)

The model view in Power BI (and the diagram view for Analysis Services

projects in Visual Studio) are exactly what you would draw in an Entity-

Relationship diagram if you want to document the tables and their relations.

In the model view you see “1” for the one-side and “*” to represent the

many-side of a relation.

As the model view is not about foreign keys, but about filters, it additionally

shows the direction of a filter, which can go either into one single direction or

into both directions, represented by a small triangle (for single-directed

filters) and two small triangles (for bi-directional filters).

In Figure 5-11 you can see a single-directed, many-to-one relationship

between AccountCustomer and Customer and a bi-directional, one-to-

one relationship between Customer and CustomerDetail shown in

Power BI’s model view.

Figure 5-11. Power BI’s Model view

Data Modeling Options

Types of Tables

There is no explicit property for a table to indicate the usage of the table (e. g.

entity table, lookup table, bridge table). I also have the strong opinion that the

type of a (non-hidden) table should not be indicated by hints in its name (e. g.

Fact_Sales or Dim_Customer). I instead recommend, that the names should

be user-friendly for the report creators (who usually don’t care about what

role a table plays in the data model, as long its returning the expected results).

The role of a table is just given by its relation to other tables. Fact tables are

always on the many-side of a filter relationship. Dimension tables are always

on the one-side in a star schema. In a snowflake schema they might as well

be on the many-side in a relation to another dimension table. For example,

the Product table will be on the one-side of the relationship to the Sales

table (which is on the many-side, as each order line contains one single

product, but the same product will be ordered several times over time). The

Product table will be on the many-side in a relationship to the Product

Subcategory table, as many products might share the same subcategory.

In Figure 5-8 you already saw a many-to-many relationship between tables

Budget and Product . The reason, why this relationship has a many-to-

many cardinality is because the budget was not created on the Product ’s

table granularity, but per Product Group instead. The Budget ’s table

foreign key Product Group is not referencing the Product tables

primary key (Product Key). In table Product column Product

Group is not unique, the same Product Group will be found in several

rows. As the join key is not unique in either table, Power BI restricts a direct

relationship to cardinality many-to-many.

Relationships of cardinality many-to-many have some disadvantages in

Power BI, as laid out in “Cardinality”. A bridge table resolves a many-to-

many relationship and is put between two tables, which are logically

connected by a many-to-many relationship. The bridge table is replacing a

many-to-many relationship with two one-to-many relationships. It is always

on the one-side of the two relationships. The content of the bridge table is a

distinct list of key(s) used to join the two original tables. As the content is

only relevant for creating the relationship, but not for building a report, the

bridge table should be hidden from the user. I usually put the postfix

“BRIDGE” in the name of a bridge table. It makes it easier for me to spot the

bridge tables, and therefore many-to-many relationships in my data model.

Figure 5-12 shows the model view of three tables of different type. The table

on the very left is a fact table (Budget) and is on the many-side of the

relationship. Right of this table you see a “bridge” table (Product Group

BRIDGE), which bridges the many-to-many relationship between the

Budget and Product table. The “bridge” table is on the one-side of both

relationships. The table on the very left is a dimension table (Product). It is

on the many-side of the relationship, as the Budget table is not referencing

the Product ’s table primary key (Product Desc), but the non-unique

column Product Group . You will learn more about the specifics of this

data model in [Link to Come]>. Here I just used it to demonstrate different

table types.

Figure 5-12. Tables of different types

Maybe you think, why should you bother with different (kind of) tables when

you can just just store everything into one singe table? In the next section you

will learn, why this is a bad idea, when it comes to Power BI and Analysis

Services Tabular.

A Single Table To Store It All

While putting all information into a single table is common in many use cases

or tools, and even Power BI allows you to build such a model, I would

strongly discourage you from doing that. If you think in terms of a star

schema, a single table means that the information of all dimension tables is

stored inside the fact table. There are plenty of reasons, why you should split

the information in at least two separate tables:

Size of model

Because Power BI’s storage engine stores imported data in memory,

Microsoft made sure to compress the data. The compression algorithm

works very well for a star schema, but replicated dimensional information

in every single row of a fact table does not compress very good. In a

scenario I built to try this out, the single table used almost three times the

space of a star schema. That means, that you can only store a third of the

data in a single table, compared to a star schema on a given infrastructure.

And the more memory the storage engine has to scan, the longer it will

take and the more pressure is on your CPU as well. Transforming the

single table into a star schema will help to fully benefit from the storage

engine. The model size will be smaller, the reports will be faster.

Adding new information may be difficult

If you want to extend the data model later by adding additional

information, you would either need to implement a transformation to add

the data to the existing table – which can be dreadful (by aligning the

different granularities of the existing and the new information) and you

would just increase the problems you are already facing with the single

table. Or you would add the new information as a separated table. This

would only work, if you need to join the two tables on one single

dimensional column, as you can’t have more than one active relationship.

Joining two fact table directly is not recommended due to the size of the

tables. Transforming the single table into a star schema will make it easier

to extend the model. You would just add new dimension tables, re-use the

already existing dimension tables and connect new fact tables to the

existing dimensions.

Wrong calculations

I guess, everybody wants to make sure, that the numbers reported are the

correct ones. Due to some optimization in the storage engine, queries on a

single table might though result to wrong results, as laid out in the

following example. Table 5-1 shows a simple and small table, containing

Date , ProductID , Price , and Quantity .

Table 5-1. A simple table containing some sales

Date ProductID Price Quantity

2023-02-01 100 10 3

2023-02-01 110 20 1

2023-02-02 110 30 4

2023-03-03 120 100 5

I then created three measures: One to count all rows of the Sales table (#

Sales = COUNTROWS(Sales)) and two others, where I assume, that I

want to count the rows of the Sales table independently of any filter on the

Date colum. One version removes all filters from the Date [Date]

column and the other removes the filter from the Sales[Date] column

(by applying function REMOVEFILTERS()).

Figure 5-13 shows the formula of [# Sales] and a card visual next to it, which

shows the value of 1. This number is correct: there was only one single sale

for the filtered date of February 2 2023.

Figure 5-13. A report showing the count of rows of the Sales table.

[Link to Come] shows the formula and the content of [# Sales

ALL(Date[Date])] , which shows a value of 3. There is one slicer per

dimension: Date (with the second of the month selected) and Product

(with ProductID 100 and 110 selected). Measure [# Sales

ALL(Date[Date])] calculates the expected value of 3, because, if we

remove the filter on the Date (for the second of the month) we are left with

only a filter on ProductID . For the two selected products (100 and 110)

there are three rows available in the Sales table.

Figure 5-14. A report showing the count of rows of the Sales table for all dates.

The third section in the report shows a very similar content, but for measure

[# Sales ALL(Sales[Date])] and filters on two columns of the

Sales table (Date and Product ID) with the identical selection as on

the dimensions. Unfortunately [# Sales ALL(Sales[Date])] shows

an unexpected value of 2. Removing the filter from the Sales[Date] column

should lead to a result of three.

Figure 5-15. A report showing the wrong count of rows of the Sales table for all dates.

The reason why this measure shows an unexpected value is due to an

optimization in the storage engine of Power BI / Analysis Services Tabular.

At the point in time, when the REMOVEFILTERS() function kicks in, the

Sales rows with ProductID of 100 were already filtered out to speed up

the queries (as there are no Sales for this ProductID on the second of

the month), leaving only rows for ProductID 110. Removing the filter on

the Sales[Date] column does not recover the rows for ProductID 100.

That’s why this measure only counts the rows for ProductID 110. This

effect is not limited to counting, but affects all kind of measures, as soon as

you start manipulating the filter context, which is very common even for

rather simple calculations. This optimization (and the negative effect) only

happens when filters directly on the fact table are in place; filters via

dimension table are not affected by this optimization.

That was the long explanation why you should not create a single table data

model in Power BI or Analysis Services Tabular, if you care about

performance, an easy-to-understand data model and correct numbers. The

short version is: Always create a dimensional model, never put all columns

into a single table. And never filter directly on the fact table (but hide those

columns from the users).

And don’t forget: If you now start with the single table, and first later

discover that you want to change it to a star schema, this step will break all

your existing reports based on this model.

On the other extreme of a data model, you do not put everything into one

single table, but fully normalize the data model to avoid redundancy. This is

not such a great idea for a data model inside of Power BI, as you will learn in

the next section.

Normal Forms

Power BI is rather flexible about what kind of data models it allows you to

build. Unfortunately, a normalized data model comes with a lot of tables and

relationships. Such a model will be hard to understand for the report users (as

information even from the same entity is spread out over multiple tables).

And all the different tables need to be joined, according to their filter

relationship. Joins are expensive, leading to slower reports. Normalized data

models are optimal for application databases, but not for analytical databases.

Again: If you now start with a normalized data model, and first later discover

that you want to change it to a star schema, this step will break all your

existing reports based on this model. Better start with a dimensional model up

front. The next section will remind you once again.

Dimensional Modelling

You do not need to believe that dimensional data modelling is so much better

than all the other data modelling approaches. But, please, trust me, that

Power BI and Analysis Services Tabular (to be more precise: their storage

engine, called VertiPaq) is optimized for dimensional data models through all

its fibers. That’s why it is the goal not to just load the data as it is into Power

BI, but to transform the tables you get from the data source into a

dimensional data model.

There is no need to actually store the data already in a dimensional model in

the data source. For example, Bill Inmon (mentioned in chapter 1),

recommends to store all analytical data in a fully normalized schema (which

he calls the Corporate Information Factory). Only the data mart layer is a

dimensional model. This layer on the other side, can either be derived from

the normalized schema with the help of DAX, Power Query or SQL. In this

book I will teach you all necessary steps in all three languages – so no

excuses anymore!

An important question you have to ask the report users (or yourself): How

much of detail is really necessary in the reports? Does the report need to

cover every single transaction or are aggregates enough? Is it necessary to

store the time portion, or will the report only be generated on a month basis?

The answers to these question define the Granularity of the data model. Read

on, to learn more.

Granularity

It is important that the granularity of your fact table matches the primary keys

of your dimension tables, so you can create a filter relationship between them

with a one-to-many cardinality. In chapter 6 in the section “Budget” you will

see an example for a case, where new information needs to be added to an

existing data model (the budget) which has a different level of detail: The

budget is only available per product group, but not per product. The actual

sales data, on the other hand, is on the product level. The solution is to add

the budget as a fact table on its own. (Chapter 6 will also explain how you

can create a filter relationship between the product table and the budget table,

despite the different granularity).

No matter which kind of data source you need to do analytics on, the shape of

it will most probably not directly fit into a dimensional model. Luckily, we

have tools available to extract, transform and first then load the data into

Power BI. The next section got you covered on these challenges.

Extract, Transform, Load

The process to extract, transform, and load the data (short: ETL), is not done

via the model view, but you can use either DAX, Power Query / M, or SQL

to achieve this. Beginning with chapter 10, you will dive into those languages

and make them your tool to extract and transform the data as needed.

Read on to learn, that there is a special kind of transformation necessary to

implement Slowly Changing Dimensions, which is not done in the Model

view.

Key Takeaways

In this chapter I took the basic concepts of data modeling and matched it with

features available in Power BI and Analysis Services Tabular. You learned a

lot about the Model View:

The Model view (in Power BI) and the Diagram view (in Visual Studio)

gives you a graphical representation of the tables and their relationship in

the data model and allow you to set plenty of properties, for both the

tables and their columns.

The purpose of the filter relationship is to propagate filters from one table

to another. The propagation works only via one single columns and is

implemented as an equi-join.

The filter relationship between two tables is represented by a continuous

line (for active relationships) or a dashed line (for inactive relationship).

The latter can be activated in a DAX measure, which will be discussed in

chapter 10.

The cardinality of a relationship is represented by “1” or “*” (= many).

You can create filter relationships of type one-to-many (which is the most

common), one-to-one and many-to-many. Many-to-many relationships can

be created unintentionally when both columns contain duplicates by

mistake. One-to-one relationships can be created unintentionally when

both columns contain only unique values. Double-check those cases.

A filter relationship has a direction. A filter can be either propagated from

one table to another or in both directions. Bi-directional filters bear the

risk of making a data model slow. There can be situations where you

cannot add another table with a bi-directional filter, when it would lead to

an ambiguous model.

You now have an understanding of how important a data model in Power BI

is. The next chapter will teach you practical knowledge of how to shape it

into a dimensional model.

Chapter 6. Building a Data Model in
DAX

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s

raw and unedited content as they write—so you can take advantage of these

technologies long before the official release of these titles.

This will be the 10th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at sevans@oreilly.com.

With DAX you are writing Data Analytic Expressions – which allow you to

create calculated tables, calculated columns and, most important, measures

(and row level security and queries, which are not in the scope of this book).

All you can achieve with calculated tables and columns you can also achieve

with solutions in Power Query / M and with SQL. If you are already familiar

with either Power Query or SQL, you might first try those to transform your

data model. If you just started with Power BI, then you need to learn DAX

anyways, as some problem can only be solved with measures, written in

DAX – and you might also implement the transformation to build your data

model in DAX as well.

TIP

By looking at a piece of DAX code it can sometimes be hard to recognize if it is the definition of a

calculated column, a measure or a calculated table. Therefore, I use the following convention:

[Measure Name] *:=* _<definition of a measure>_

'Table Name'[Column Name] *=*
 <definition of a calculated column>

[Table Name] **= /* calculated table */** _<definition of a calculated table>_

Normalizing

As you learned back in chapters 1 and 2, normalizing is important for your

fact tables, and means, that you strip the table from replicating information.

You only keep foreign keys to one or more different tables, which contains

DISTINCT lists of the otherwise redundant information. These other table

are the dimension tables.

With that said, normalizing is as easy as just removing all column with

repeating information, which are not the (primary) key of the information and

putting them into a different table of its own. To find out, which columns

contain repeating information, I just create a table visual in Power BI with

only the single column or a combination of columns which might have a one-

to-one relationship with each other, which you can see in Figure 6-1. Power

BI will automatically only show the distinct values. In the given example, the

following combinations of columns are candidates for building dimensions:

Country

Discount Band

Product, Manufacturing Price

Date, Month Name, Month Number, Year

Segment

Figure 6-1. Dimension candidates

Always also use your domain knowledge and discuss with the domain experts

to decide, if choosing these candidates are indeed a good decision. Especially

if you only work with demo or test data (and not productive data), the true

relationship between the columns might not be clear from just looking at the

data available.

When we can agree on, that the candidates above are the true dimensions,

you can create a calculated table and use DISTINCT with either a single

column reference (which will work for Country , Discount Band and

Segment in our example) or in combination with SELECTCOLUMNS (for

columns Product and Manufacturing Price). Maybe you ask

yourself now: Is it really worth to create single-column dimensions? The

clear answer is: Yes! Remember, when we talked about all the disadvantages

and problems you get with a single-table model back in chapter 5? We must

avoid direct filters on the fact table in all circumstances.

You should overcome the temptation to create the Date table in the same

manner (by applying DISTINCT over the fact table’s columns), as the date

values in the fact table usually have gaps (e. g. weekend, bank holiday, etc.),

which you can clearly see in Figure 6-1. I will show you a way of how to

create a full-functional date table later in section “Time and Date”.

We can though not physically remove any of the columns above from the fact

table, but only hide those columns (so that the report creators are not

unintentionally using them) – otherwise the creation of the calculated tables

(referencing those columns) would fail.

WARNING

And that’s the big disadvantage of using DAX to model your data: You can only add columns and

tables to form a star schema, but you still need to keep all the information in it’s original (un-modeled,

non-star) shape.

You cannot truly transform the data into the intended model. But this should

not keep your from applying these best practices. It is better that you shape

your data with DAX then not shaping it at all. Just remember, that when the

size of the data model (in memory – but you can also just take a look on the

size of the PIBIX file on disk to get a rough impression how small or big

your data model is) is starting to become a problem for your resources, then

it’s time to re-factor your DAX into Power Query (or SQL).

Denormalizing

I am sure, by now, you are already familiar, that we need to denormalize the

dimension tables. To denormalize, we need to add columns with information

from a related table into the main dimension table. The DAX function which

achieves this is called RELATED. It can traverse from the many side of a

relationship to the one side, even over several tables, and fetch the content of

a column. In the example, a product’s information is split into three different

tables:+DimProduct+, DimProductSubcategory ,

and+DimProductCategory+. Simply create two new calculated columns in

table DimProduct :

DimProduct[Subcategory] = RELATED(DimProductSubcategory[EnglishProductSubcategoryName])
DimProduct[Category] = RELATED(DimProductCategory[EnglishProductCategoryName])

As there is a direct relationship in the data model between DimProduct and

DimProductSubcategory , it makes sense, that we can reference a value

from there. But DAX is smart enough to traverse also from DimProduct over

DimProductSubcategory to DimProductCategory . Therefore, the

second example works as expected. Be reminded, that RELATED can only

reference from a table on the many side to a table on the one side. (To

traverse the other direction, you can use RELATEDTABLE, which returns a

table with all the values from the many side.) Again, we can (and definitely

should) hide the two tables DimProductSubcategory and

DimProductCategory , to avoid that report creators will use any of the

columns unintentionally, but we cannot actually delete the two tables from

the model (because, then the newly created calculated columns would

through an error).

Calculations

Calculations is the home game for DAX. DAX stands for Data Analysis

Expressions and is therefore built for creating formulas for even very

complex challenges. And when I speak of calculations I mostly mean

(explicit) measures, that’s what the core competence of a Data Analytic

Expression is. Creating calculated tables and calculated columns is possible

as well, but I consider them more as a workaround in the early days of

Excel’s Power Pivot, when Power Query was not available yet. In many

scenarios you are better off with explicit measures.

You should consider explicitly creating measure for all type of calculations:

Simple aggregations for additive calculations, which could also be

calculated through Default Summarization . In the general part about

Power BI I already laid out why you should explicitly create DAX

measures instead of relying on Default Summarization . I usually

rename the numeric column (e. g. add an underscore “+” as a prefix), hide

the column and then create a simple measure by applying the SUM

function (or whatever aggregation is making sense). When the calculation

is more complex (e. g. because you need to multiply the quantity with a

price) you need the SUMX function (or a comparable iterator function),

where you can provide the formula for the multiplication. SUMX is

calculating this formula for each and every row of the table you provided

as the first parameter of the function and sums these results up.

[Units Sold] :=

 SUM(Financials[+Units Sold])

[Gross Sales] :=
 SUMX(
 'Financials',
 'Financials'[+Units Sold] * Financials[+Sale Price]
)

Semi-additive calculations require you to specify for which date the value

should be calculated. Usually, it is the first or the last date of the current

time range.

[First Value] :=
/* based on a blog post by Alberto Ferrari
 https://www.sqlbi.com/articles/semi-additive-measures-in-dax/
 */
VAR FirstDatesPerProduct =
 ADDCOLUMNS (
 VALUES ('Product'[Product ID]),
 "MyDay", CALCULATE (MIN ('Sales'[Date])
)
)
VAR FirstDatesPerProductApplied =
 TREATAS (
 FirstDatesPerProduct,
 'Product'[Product ID],
 'Date'[Date]

)
VAR Result =
 CALCULATE (
 SUM ('Sales'[Quantity]),
 FirstDatesPerProductApplied
)
RETURN Result

[Last Value] :=
/* based on a blog post by Alberto Ferrari
 https://www.sqlbi.com/articles/semi-additive-measures-in-dax/
 */
VAR LastDateInContext = MAX ('Date'[Date])
VAR LastDatesPerProduct =
 ADDCOLUMNS (
 CALCULATETABLE (
 VALUES ('Product'[Product ID]),
 ALL ('Date')
),
 "MyDate", CALCULATE (
 MAX ('Sales'[Date]),
 ALL ('Date'),
 'Date'[Date] <= LastDateInContext
)
)
VAR LastDatesPerProductApplied =
 TREATAS (
 LastDatesPerProduct,

 'Product'[Product ID],
 'Date'[Date]
)
VAR Result =
 CALCULATE (
 SUM ('Sales'[Quantity]),
 LastDatesPerProductApplied
)
RETURN Result

TIP

Non-additive calculations must be done in the form of a DAX measure. You cannot achieve the correct

results with any other technique (e. g. calculated column, Power Query, SQL, etc.)

Results of non-additive calculations cannot just be aggregated in a

meaningful sense. Therefore, you need re-create the calculation as a DAX

measure based on the aggregated parts of the formula. You need to sum up

the elements of the formula (instead of summing up the results). The

Margin in Percentage of the Sales is calculated by dividing

the margin by the sales amount, which works perfectly on the level of one

single row in the sales table. But a report barely shows the individual sales

rows, but aggregated values. Calculating the sum or even the average of

the result of the division would show the wrong value. Therefore, it needs

to be calculated as shown.

[Margin %] := DIVIDE(SUM('Sales'[Margin]), SUM('Sales'[Sales]))

This measure will work on the level of individual sales, where only a

single sale event is available, as well (as the sum of the margin of a single

row in the sales table is just the margin of the row).

Counts over DISTINCT entities are another example for non-additive

calculations. The DISTINCT count of customers who bought something

in the first quarter of a year is not the sum of the DISTINCT counts of

customers in January plus the DISTINCT counts of customers in

February plus the DISTINCT customers in March, as some customers

might have bought something in more than one month. Those customers

may not be counted twice when calculating the DISTINCT count for the

quarter. But creating such a measure is not a big deal:

[[+DISTINCT+Count]]

[+DISTINCT+ Count of Products] := +DISTINCT+COUNT('Sales'[Product ID])

[[CountVs+DISTINCT+Count]] .Visual showing measures Count of

Products and Distinct Count of Products

image::ch10_BuildingADataModelInDAX/CountVs+DISTINCT+Count.png[]

You can see in [Link to Come], that two products were sold on the first of the

month (A and B), and a single product each on the second (B) and third ©.

But in total it has been only three different products (A, B, and C), which

were sold during those three days (as product B was sold on both, the first

and the second of the month). The column Count of Products adds up

to 4 products, while Distinct Count of Products shows the correct

total of 3 (different) products. Sometimes I see people complaining on social

media, that the table visual in Power BI is buggy, as it does not always add

up the individual numbers in the total. I don’t really get these discussions, as

it clearly depends on the context of a calculation, if the individual numbers

need to be aggregated or if the calculation has to be done on the aggregated

level, as pointed out in the discussion of additive and non-additive measures

back in the first part of this book.

TIP

Non-additive calculations must be done in the form of a DAX measure. You cannot achieve the correct

results with any other technique (e. g. calculated column, Power Query, SQL, etc.)

Time Intelligence calculations are another use case, which can only be

solved with DAX measures. The trick is basically to use CALCULATE to

change the time period accordingly (e. g. from the current day to all days

since the beginning of the year to calculate the year-to-date value), similar

to the logic for the semi-additive measures. DAX comes with built-in

functions to either directly calculate the value (e. g. TOTALYTD) or

functions which you can use as a filter parameter for CALCULATE (e. g.

DATESYTD). Those functions are just hiding some complexity from you,

but you can always come up with a formula which is achieving the same

result (even with the same performance) by e. g. calculating the first day

of the year and then changing the filter context accordingly. See three

implementations of a year-to-date calculation for Sales Amount in the

following code snippets:

[TOTALYTD Sales Amount] :=
TOTALYTD(
 [Sales Amount],
 'Date'[Date]
)

[TOTALYTD Sales Amount 2] :=
CALCULATE(
 [Sales Amount],
 DATESYTD('Date'[Date])
)

[TOTALYTD Sales Amount 3] :=
CALCULATE(
 [Sales Amount],
 DATESBETWEEN(
 'Date'[Date],
 STARTOFYEAR(LASTDATE('Date'[Date])),
 LASTDATE('Date'[Date])
)
)

All three have the same semantic and their different syntax generates the

identical execution plan. Therefore, their performance is identical. They

are just using more or less syntax sugar to write the code.

Figure 6-2 shows the identical result of the three different approaches in

DAX to calculate the YTD.

Figure 6-2. Visual showing the result of the three different measures to calculate the year-to-date
value for Sales Amount

TIP

Time Intelligence calculations must be done in the form of a DAX measure. You cannot achieve the

correct results with any other technique (e. g. calculated column, Power Query, SQL, etc.)

Especially requirements for time intelligence can easily lead to many

variations of a single measure (e. g. year-to-date, previous month, previous

year, differences in absolute numbers, differences in percentage, comparison

to budget, etc.). It can be very tedious to create (and maintain) all the

variations for each measure. Here, Calculation Groups come in very handy.

Calculation Groups add a layer above all measures and are explicitly

activated as filters within visuals or via CALCULATE within other measures.

The advantage is, that you only need to specify the logic of how to calculate

e. g. a year-to-date for a measure as one single item in the calculation group.

When you create a calculation item, you can simply copy and paste an

existing definition of a measure, but replace the base measures name (e. g.

[Sales Amount]) with function SELECTEDMEASURE . This logic can

then be activated for every measure when you need it. If the logic changes,

you need only change it in a single place (the calculation item), instead of

changing it per measure. Calculation Groups are fully supported in Power BI

- but at time of writing the user interface of Power BI Desktop does not

expose their definitions. Therefore, you need to use a third-party tool to

create and maintain Calculation Groups in your PBIX file. If you are

working with Analysis Services Tabular you have full access to the definition

of Calculation Groups in, for example, Visual Studio.

[Actual] := SELECTEDMEASURE()

[YTD] := TOTALYTD(SELECTEDMEASURE(), 'Date'[Date])

Figure 6-3. Defining a Calculation Group in Tabular Editor 3

In the screenshot I used Tabular Editor 3, but you can also use the free

version of Tabular Editor (Version 2) to maintain Calculation Groups. In the

first step you need to create a new Calculation Group by right-clicking

Tables inside TOM Explorer . I renamed both, the table and column

“Name” to “Time Intelligence”. Second, you add Calculation Items

per variance. Here I added one for Actual and one for YTD as just

described.

Flags and Indicators

Replacing abbreviations and technical identifiers with meaningful text can

easily be achieved with DAX. I intentionally used a different syntax for each

of the following examples, to demonstrate different possibilities:

IF Function

Every replacement logic can be implemented by writing a bunch of nested IF

functions. Always make sure to use a new line for each of the parameters and

indent the parameters. Otherwise, a formula, especially one with nested

functions can be really hard to read. If the first parameter of IF evaluates to

TRUE, then the second parameter is returned. Otherwise, the third parameter.

Calculated column Class Description shows three nested IF functions.

+

'DimProduct'[Class Description] =
IF(
 DimProduct[Class] = "H",
 "High",
 IF(
 DimProduct[Class] = "M",
 "Medium",
 IF (
 DimProduct[Class] = "L",
 "Low",
 "other"
)

)
)

SWITCH Function

SWITCH can be used with just a simple list of values, which I prefer over

nested IFs due to better readability. For calculated column Product Line

Description I did provide a column name as the first parameter and

different literals for the second, fourth, etc. parameter. If the first parameter

matches one of the literals, then the third or fifth or etc. value is returned. I

provide a last parameter in case there is a new ProductLine added after I

wrote the formula. If I would omit the last parameter, then for such a new

ProductLine a blank value would be shown as the Product Line

Description . I prefer “other” (or something similar) over a blank text.

+

'DimProduct'[Product Line Description] =
SWITCH(
 DimProduct[ProductLine],
 "R", "Road",
 "M", "Mountain",
 "T", "Touring",
 "S", "Standard",
 "other"
)

SWITCH TRUE Function

Finished Good Description works with the SWITCH function, but in

a different way. For the first parameter I used TRUE and the even parameters

contain each a condition (which evaluates to TRUE or not) instead of a literal

value. If the first parameter and the second parameter are equal (that means,

that the condition provided in the second parameter evaluates to TRUE) then

the third parameter is returned. If that’s not the case, then the first parameter

is compared with the fourth parameter and so forth. You should provide a last

parameter which is returned when all the comparisons failed.

+

'DimProduct'[Finished Goods Description] =
SWITCH(
 TRUE(),
 DimProduct[FinishedGoodsFlag] = 0, "not salable",
 DimProduct[FinishedGoodsFlag] = 1, "salable",
 "unknown"
)

Lookup Table

Generally, I prefer to have a lookup table for the replacement values. I find it

easier to just maintain the content of a table instead of rewriting a formula

when new values need to be added or existing replacements have to be

updated. If you need the replacements in more than one language, than a

lookup has its benefit as well (as we will discuss in chapter 3 when we talk

about multi-lingual reports). Creating the lookup-table in DAX is clearly not

my favorite (because changing the content of the table means to change the

formula of the calculated table), but it can be done with the DATATABLE

function. Table Styles (DAX) contains the code. When you then create a

filter relationship between the Styles (DAX) and DimProduct over

each column Style , you can use RELATED to lookup the values. In case a

Style is present in DimProduct which is not (yet) available in table

Styles (DAX) I check for BLANK and return “unknown”.

+

[Styles (DAX)] = /* calculated table */
DATATABLE(
 "Style", STRING,
 "Style Description", STRING,
 {
 {"W", "Womens"},
 {"M", "Mens"},
 {"U", "Universal"}
 }
)

+

'DimProduct'[Style Description] =
VAR StyleDescription = RELATED('Styles (DAX)'[Style Description])
VAR Result =
IF(
 ISBLANK(StyleDescription),
 "unknown",
 StyleDescription
)
RETURN Result

Treating BLANK values

Sometimes you do not need to develop complex transformation, but only

make sure to replace empty strings. DAX distinguishes two kinds of empty

strings. A string can indeed contain just an empty string. This can be checked

by comparing an expression against two double-quotes “”. Additionally, a

string (or a column or expression of any data type) can also be blank. Blank

means, that the string is not just an empty string, but that there was no value

provided at all. Relational database call those missing values NULL . You can

either compare an expression against BLANK() or you can explicitly check

if an expression is blank by passing the expression into function ISBLANK .

In calculated column WeightUnitMeasureCode I replaced empty and

blank values with “N/A”.

+

'DimProduct'[WeightUnitMeasureCode cleaned] =
IF(
 ISBLANK(DimProduct[WeightUnitMeasureCode]) || DimProduct[WeightUnitMeasureCode] = "",
 "N/A",
 DimProduct[WeightUnitMeasureCode]
)

Time and Date

As pointed out in chapter 6, you should create your own time-related table(s)

when it comes to Power BI and Analysis Services Tabular. You can use the

DAX code in this section as a template, which you then change and adopt to

the needs of your report users. The number of rows in a Date or Time

table is usually neglectable – so you do not have to limit yourself in the

amount and variations of columns you want to add.

First, let’s create a Date table. The starting point is to create a list of dates

for the time range your fact tables contain. Basically, you do have two

options: CALENDARAUTO and CALENDAR .

CALENDARAUTO

Function CALENDARAUTO scans all your tables for columns of data type

Date and will then create a list of dates for January 1 of the earliest year

until December 31 for the latest year. This will work as long as you do not

import columns with “exotic” dates (like birthdates or placeholders like

January 1 1900 or December 31 9999). In case of financial years (which

do not start with January 1) you can pass in an optional parameter to

CALENDARAUTO to move the start month by x months).

[Date (CALENDARAUTO)] = CALENDARAUTO() /* calculated table */

CALENDAR

Function CALENDAR gives you more control, as you have to provide two

parameters: The first date and the last date of your Date table. These

parameters can either be hardcoded (e. g. DATE(2023, 01, 01)),

which is not very flexible and you need to set a reminder in your calendar

to change the value once a year to add the dates for the new year) or you

can write an expression where you calculate the two dates from your fact

table’s date column. Unless your fact table is huge, the calculation will be

fast enough and will give you rest-of-mind, that the date table will always

contain all necessary entries with every refresh.

[Date (CALENDAR)] = /* calculated table */
 CALENDAR(
 DATE(
 YEAR(MIN('Fact Reseller Sales'[OrderDate])),

 01, /* January */
 01 /* 1st */
),
 DATE(
 YEAR(MX('Fact Reseller Sales'[OrderDate])),
 12, /* December */
 31 /* 31st */
)
)

After you created the calculated table you can add new columns over the user

interface of Power BI Desktop. I would though recommend to nest

CALENDARAUTO or CALENDAR into ADDCOLUMNS and then specify pairs

of name and expression for the additional columns. With that approach you

have everything in one single place (the expression for the calculated table)

and not spread out over separated calculated columns. This allows you also to

easily copy and paste this full definition of the calculated table to the next

data model.

[Date (CALENDAR)] = /* calculated table */
ADDCOLUMNS(
 CALENDAR(
 DATE(
 YEAR(MIN('Fact Reseller Sales'[OrderDate])),
 01, /* January */
 01 /* 1st */

),
 DATE(
 YEAR(MX('Fact Reseller Sales'[OrderDate])),
 12, /* December */
 31 /* 31st */
)
),
 "Year", YEAR([Date]),
 "MonthKey", YEAR([Date]) * 12 + MONTH([Date]),
 "Month Number", MONTH([Date]),
 "Month", FORMAT([Date], "MMMM"),
 "YYYY-MM", FORMAT([Date], "YYYY-MM"),
 "Weeknumber (ISO)", WEEKNUM([Date], 21)
 "Current Year", IF(YEAR([Date])=YEAR(TODAY()), "Current Year", YEAR([Date]

)

Typical additional columns for a date table are:

DateKey as a whole number representing the date in the format

YYYYMMDD . You can calculate this whole number by extracting the year

from the date, which you multiple with 10000, add the number of the

month multiplied by 100 and then add the day. In a data warehouse it is

best practice to also have the keys for dates in the form of a whole

number. In Power BI and Analysis Services Tabular this is not so

important.

Year as the year portion of the date. DAX function YEAR got you

covered here.

Variations of the month, like the month number of the year, the month

name, the year and the month combined in different formats. Most of the

variations can be calculated by using function FORMAT and passing in a

format string.

You pass the date as the first parameter for function WEEKNUM. The

second parameter allows you to specify, if your week starts on Sundays or

on Mondays or if the week number should be calculated according to the

ISO standard.

Users expect that a report shows the most recent data. Preselecting the

right year and month can be a challenging task unless you have a column

containing “Current Year” or “Current Month”, which dissolves to the

right year or month.

There are no functions similar to CALENDARAUTO or CALENDAR to get the

range for a time table. But we can use GENERATESERIES to request a table

containing a list of values for the specified range of integers. To create a table

for every minute of the day, we need to CROSSJOIN a table containing

values 0 to 23 (for the hours of a day) and a second table containing values 0

to 59 (representing the minutes of an hour).

Again, by using ADDCOLUMNS we can add additional columns to this

expression, so we have the full definition of this calculated table in one single

place: * Function TIME can convert the pairs of hours and minutes into a

proper column of datatype Time . * Function FORMAT can do its wonders

also with time related content.

[Time (DAX)] = /* calculated table */
VAR Hours = SELECTCOLUMNS(GENERATESERIES(0, 23), "Hour", [Value])
VAR Minutes = SELECTCOLUMNS(GENERATESERIES(0, 59), "Minute", [Value])
VAR HoursMinutes = CROSSJOIN(Hours, Minutes)
RETURN
 ADDCOLUMNS(
 HoursMinutes,
 "Time", TIME([Hour], [Minute], 0),
 "Time Description", FORMAT(TIME([Hour], [Minute], 0), "HH:MM")
)

Role-Playing Dimensions

If you opt to load a role-playing dimension only once into the data model,

you need to make sure, that you add as many relationships as foreign keys

from one single table to the role playing dimension exist. A maximum of one

of those relationships can be active, the others only can be inactive, but can

be activated in measures. That means, that you need to create one variation of

each measure per role. Instead of having just a Quantity measure, you

would create individual measures like Order Quantity , Sales

Quantity , etc. Each of these measure use CALCULATE and

USERELATIONSHIP to explicitly activate one of the relationships. DAX is

smart enough to (implicitly) deactivate the active relationship for the sake of

the context inside CALCULATE , so that still only one relationship is active at

one point in time.

[Order Quantity] :=
CALCULATE(
 SUM(Sales[Quantity]),
 USERELATIONSHIP(Sales[OrderDate], 'Date'[Date])
)

[Ship Quantity] :=
CALCULATE(
 SUM(Sales[Quantity]),
 USERELATIONSHIP(Sales[ShipDate], 'Date'[Date])
)

TIP

Again, Calculation Groups can be of help here. You can create Calculation Group items per role of the

dimension, instead of duplicating all your measures as many times as you have roles.

The alternative approach is to physically load the role playing dimensions

several times. Instead of living with just one single Date table you will

create calculated tables in DAX to duplicate the table (with all its content).

This has the disadvantage of increasing the size of your model, but as long as

the size of the role-playing dimension is not huge, this is usually neglectable.

The advantage is, that you do not need to create variations of your measures

(by applying CALCULATE and USERELATIONSHIP), but the report

creater choses one copy of the dimension table over the other – or can even

combine both. Creating a copy of a table in DAX is rather easy. You just

create a calculated table and use solely the name of the other table as the

expression. I, though, strongly recommend renaming all columns to add e. g.

the table name as the prefix, so it is clear which e. g. Date column is

referred to (the one from the newly created Order Date or the Sales

Date). You can do this by either manually renaming all columns or by

changing the expression of just referring to the base table and use

SELECTCOLUMNS which allows you to specify which columns (or

expressions) you want to return under which column name. This approach

allows you again to have all the logic (renaming) in one single place (namely

the expression for the calculated table). In the parts about Power Query / M

and SQL I will show you, how you can automatically rename all columns,

without specifying each and every column, as we need to do in DAX.

[Order Date (DAX)] = /* calculated table */
SELECTCOLUMNS(
 'Date',
 "Order Date", [Date],
 "Order Year", [Year],
 "Order Month", [Month]
)

[Sales Date (DAX)] = /* calculated table */
SELECTCOLUMNS(
 'Date',
 "Sales Date", [Date],
 "Sales Year", [Year],
 "Sales Month", [Month]
)

Slowly Changing Dimensions

If you want to implement Slowly Changing Dimensions, you have to do this

in a physically implemented data warehouse. In DAX you cannot update

rows to keep track of changes and different versions. Usually, Slowly

Changing Dimension means not extra effort in the world of DAX, as the rows

in the fact table are already referencing the right version of the dimension

table. Only, if your report user need to override the default version (= the

version which was valid at the point in time the fact was collected), then you

need to reach out to DAX and implement the logic via CALCULATE in your

measures.

Figure 6-4 shows a report page with the following content:

A slicer to choose the product.

A slicer to choose the year, month, or day when the product had to be

valid. If a time range is selected (e. g. a year) then the version valid at the

end of this period will be taken into account.

Two Card visuals showing the last day of the period chosen (Selected

Product Version) and the Standard Cost valid for this day.

A Table visual showing columns

Date

Product name

StartDate , EndDate and StandardCost of the version of the

product valid at the Date ,

Quantity sold on that date

Cost as the result of the shown StandardCost times the shown
Quantity

Cost (Product Version) calculated as Product’s version

Standard Cost as shown at the top of the screen times Quantity

sold on that day

Figure 6-4. A report page which gives the choice of the Standard Cost of which product’s version
should be used to calculate the Cost (Product Version)

For Product Sport-100 Helmet, Black a StandardCost of 12.0278

was valid in years 2020 and 2021 (StartDate 2020-01-01 and EndDate

2022-01-01). With beginning of 2022 the StandardCost rose to 13.7882.

In the individual lines of the Table visual the Cost is calculated by

multiplying Quantity with either of those two values (e. g. 27 * 12.0278 =

324.7506). In contrast, the value in column Cost (Product Version) is

calculated as the individual Quantity by 13.7882 in all rows, as this is the

standard cost valid for the selected version of the product (e. g. 27 * 13.7882

= 374.7114).

To implement this, we need the following parts:

1. A table containing the versions, where the report user selects from. As

new versions can be created in any point in time, probably it is a good idea

to use the date dimension (and possibly the time dimension) here.

[Product Version] = 'Date' /* calculated table */

Alternatively, you could also create a table containing all distinct

EndDate values from the fact table. I decided against it here, as in a real-

world scenario there could be a along list of those version, which will be

possibly spread very unevenly over time, which makes scrolling down the

list a bit awkward. But it’s totally up to you to exchange the reference to

the Date table with DISTINCT(Product[EndDate]) .

Resist to create a relationship from this table to e. g. the StartDate or

EndDate of the Product table. Such a filter would not work as

expected, as someone could select a date not existing as a StartDate or

EndDate . Therefore, we will apply the filter over DAX in the measure

where we are calculating Cost (Product Version) .

2. A measure for the selected product version:

[Selected Product Version] := MAX('Product Version'[Date])

3. A measure to find the standard cost for the selected version, independent

from the selected date. All the versions of the same product have the

identical business key (ProductAlternateKey). Therefore, you need

to remove any filter on the product table (as a filter e. g. on the name

would be problematic, if the name changed over the versions) and add a

filter on the ProductAlternateKey and find the product, for which

the selected product version falls into the timespan of StartDate and

EndDate . We need also take into account, that StartDate or

EndDate could be empty, as the product’s version is valid since ever or

still valid.

[Standard Cost (Product Version)] :=
VAR ProductVersion = [Selected Product Version]

RETURN
SUMX(
 'Product',
 VAR AlternateKey = 'Product'[ProductAlternateKey]
 VAR Result =
 CALCULATE(
 MIN('Product'[StandardCost]),
 ALL('Product'),
 'Product'[ProductAlternateKey] = AlternateKey,
 ProductVersion >= 'Product'[StartDate] || ISBLANK('Product'[StartDate]),
 ProductVersion <= 'Product'[EndDate] || ISBLANK('Product'[EndDate])
)
 RETURN Result
)

[Cost (Product Version)] :=
SUMX(
 'Product',
 [Order Quantity] * [Standard Cost (Product Version)]
)

Hierarchies

If you followed all best practices described in this book so far, then you

already have denormalized all natural hierarchies in the dimension tables, as

described in chapter “Denormalizing”. With the natural hierarchy

denormalized you have all levels of the hierarchy as columns in one single

table. Adding them to a hierarchy is very easy.

Here we concentrate on parent-child hierarchies. They are very common, and

we also need to store the names of all parents in dedicated columns. Read on

if you want to learn how you can achieve this with DAX.

First, we create the materialized path. Luckily there is function DAX

available:

'Employee (DAX)'[Path] = PATH('Employee (DAX)'[EmployeeKey], 'Employee (DAX)'[ParentEmployeeKey])

Then we need to dissect the Path and create a calculated column per

(expected) level. Please add calculated columns for some extra levels in case

the depth of the organigram (and therefore the path length of some of the

employees) will increase in the future. To make creating these columns as

convenient as possible, I put the level number (which should correspond with

the name of the calculated column) into variable. Then you can just copy &

paste this definition for each level and only change the name and the content

of variable LevelNumber . LevelNumber is used as a parameter for

PATHITEM to find the n entry in the path. The found string represents the

key of the employee and is stored in variable LevelKey . This key is then

passed into LOOKUPVALUE to extract the full name of this employee and

stored in variable LevelName . The latter is returned.

th

'Employee (DAX)'[Level 1] =
VAR LevelNumber = 1
VAR LevelKey = PATHITEM ('Employee (DAX)'[Path], LevelNumber, INTEGER)
VAR LevelName = LOOKUPVALUE ('Employee (DAX)'[FullName], 'Employee (DAX)'[EmployeeKey], LevelKey)
RETURN LevelName

You can already add all Level columns to a common hierarchy if you want.

I created a Matrix visual, shown in Figure 6-5, with the hierarchy on the rows

and measure Sales Amount in the value section. So far so good. As soon

as you start expanding the upper levels you will see, that the Sales

Measure is available for all (in my case seven) levels of the hierarchy, even

when there is no employee related to the shown level. The result for the last

available level is repeated for all sub-levels when they do not have their

“own” value.

Figure 6-5. The hierarchy expands to unnecessary levels with empty names and repeating Sales
Amount .

In a good data model, you should take care of this problem. You need to add

another column (to calculate on which level an employee is) and a measure to

aggregate this column with MAX , another measure (to calculate on which

level the measure is actually displayed) and tweak the existing measures to

return blank in case an employee is shown in an unnecessary level (by

returning blank in case the level the measure is displayed on is higher than

the employee). The unnecessary level will not be displayed, if all measures

only return blank.

We can calculate the level of an employee by counting the levels the path

contains (by basically counting the separator character plus one). This gives

us the position of an employee within the organigram. The lower the path

length, the higher the position in the organigram, with the CEO having a path

length of 1. Calculating this is much easier, than you might think, thanks to

function PATHLENGTH . Calculating the maximum as a measure is then no

real challenge, I guess:

'Employee (DAX)'[PathLength] = PATHLENGTH('Employee (DAX)'[Path])

[MaxPathLength] := MAX('Employee (DAX)'[PathLength])

We need also to count at which level the measure is. Here we need to check,

if the column, representing a certain level, is in the current scope of the visual

or not. If it is, INSCOPE will return TRUE , which is implicitly converted to

1 in an arithmetic calculation. If it is not in scope, then INSCOPE will return

FALSE , which is implicitly converted to 0 in an arithmetic calculation. In

case you add columns for additional level, please remember to add them in

the calculation of this measure as well.

[CurrentLevel (DAX)] :=
ISINSCOPE('Employee (DAX)'[Level 1]) +
ISINSCOPE('Employee (DAX)'[Level 2]) +
ISINSCOPE('Employee (DAX)'[Level 3]) +
ISINSCOPE('Employee (DAX)'[Level 4]) +
ISINSCOPE('Employee (DAX)'[Level 5]) +
ISINSCOPE('Employee (DAX)'[Level 6]) +
ISINSCOPE('Employee (DAX)'[Level 7])

Finally, we need to add a measure, in which we decide if a value has to be

displayed or not.

Sales Amount (DAX) =
VAR Val = [Sales Amount]
VAR ShowVal = [CurrentLevel (DAX)] <= [MaxPathLengh (DAX)]
VAR Result =
 IF (ShowVal, Val)
RETURN
 Result

TIP

Again, Calculation Groups can be of help here. You can create two Calculation Group items. One to

just return the plain measure (” SELECTEDMEASURE() “), another where you copy and paste the code

from measure Sales Amount (DAX) and replace " [Sales Amount] " with

" SELECTEDMEASURE() “.

If you now exchange the Sales Amount measure with the newly created

Sales Amount (DAX) measure, you get rid of the unnecessary empty

levels of the hierarchy, as you can see in Figure 6-6.

Figure 6-6. The hierarchy expands to unnecessary levels with empty names and repeating Sales
Amount .

Key Takeaways

Preferably, you push transformations as for as possible upstream, that means

to Power Query, or, better, into the data source (e. g. a data warehouse). You

can though do everything in DAX as well if you feel more comfortable. The

only exceptions are semi- and non-additive calculations – for them there is no

way around DAX. Take a look on what you learned in this chapter:

Normalizing your fact tables involves steps to find candidates for

dimensions, creating dimension tables as calculated tables via

SELECTCOLUMNS and hide those colum ns in the fact table.

Unfortunately, we cannot actually remove those columns from the fact

table, because it would break the DAX code of the dimension tables.

Denormalizing in DAX means to use RELATED to move columns over to

the main dimension. Again, we cannot remove the referenced tables

without breaking the DAX code. Therefore, we just hide these tables.

I would recommend creating all calculations as DAX measures, as a

starting point (and not as DAX calculated columns or as columns in the

Power Query or in SQL). Carefully analyze the formula if it involves

multiplication, because then you may need to use an iterator function to

achieve the correct result.

We can solve the problem of role-playing dimensions in two ways: Either

adding (inactive) relationships to the data model and activating them via

USERELATIONSHIP in the measures where we do not want to use the

active relationship. Or we can add the dimension several times under

different names and create standard relationships. Then no special

treatment of your DAX code is necessary.

Natural hierarchies are denormalized anyways in a star schema.

Parent-child hierarchies need some extra love before we can use them

conveniently in reports. You need to create some extra columns and

measures.

About the Author

Markus Ehrenmueller-Jensen models data since over three decades. He

teaches best practices at international conferences, webinars and workshops

and implements them for clients in various industries. Since 2006 he is

specialized in building Business Intelligence and Data Warehouse solutions

with Microsoft’s Data Platform (relational database engine on- and off-

premises, Analysis Services Multidimensional and Tabular, Reporting

Services, Integration Services, Azure Data Factory, Power BI dataflows, and

– of course – Power BI Desktop and its predecessor PowerPivot for Excel).

He is the founder of Savory Data (www.savorydata.com) and a professor for

Databases and Information Systems at HTL Leonding (technical college,

www.htl-leonding.ac.at) and holds several Microsoft certifications. Markus is

the (co)-author of several books and was repeatedly awarded as a Microsoft

Data Platform MVP since 2017. You can contact him via

markus@savorydata.com. When Markus does not beat data into shape, he

holds the beat behind the drum set in various musical formations.

	1. Understanding a Data Model
	Data Model
	Basic Components
	Entity
	Tables
	Relations
	Primary Keys
	Surrogate Keys
	Foreign Keys
	Cardinality

	Combining Tables
	Set Operators
	Joins
	Join Path Problems
	Entity-Relationship Diagrams (ERD)

	Data Modeling Options
	Types of Tables
	A Single Table To Store It All
	Normal Forms
	Dimensional Modeling
	Granularity
	Extract, Transform, Load
	Ralph Kimball and Bill Inmon
	Data Vault & Other Anti-Patterns

	Key Takeaways

	2. Building a Data Model
	Normalizing
	Denormalizing
	Calculations
	Flags and Indicators
	Time and Date
	Role-Playing Dimensions
	Slowly Changing Dimensions
	Hierarchies
	Key Takeaways

	3. Use Cases
	Binning
	Budget
	Multi-language Model
	Key-Value Pair Tables
	Combining Self-Service and Enterprise BI
	Key Takeaways

	4. Performance Tuning
	Key Takeaways

	5. Understanding a Power BI Data Model
	Data Model
	Basic Concepts
	Tables
	Relationships
	Primary Keys
	Surrogate Keys
	Foreign Keys
	Cardinality

	Combining Tables
	Set Operators
	Joins
	Join Path Problems
	Entity-Relationship Diagrams (ERD)

	Data Modeling Options
	Types of Tables
	A Single Table To Store It All
	Normal Forms
	Dimensional Modelling
	Granularity
	Extract, Transform, Load

	Key Takeaways

	6. Building a Data Model in DAX
	Normalizing
	Denormalizing
	Calculations
	Flags and Indicators
	IF Function
	SWITCH Function
	SWITCH TRUE Function
	Lookup Table
	Treating BLANK values

	Time and Date
	Role-Playing Dimensions
	Slowly Changing Dimensions
	Hierarchies
	Key Takeaways

	About the Author

